Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Type of study
Language
Publication year range
1.
J Insect Sci ; 14: 164, 2014.
Article in English | MEDLINE | ID: mdl-25399431

ABSTRACT

The water-hyacinth grasshopper Cornops aquaticum (Bruner) (Orthoptera: Acrididae) is native to South America and inhabits lowlands from southern Mexico to central Argentina and Uruguay. This grasshopper feeds and lays eggs on species from the genera Eichhornia and Pontederia. Particularly, Eichhornia crassipes is considered "the world's worst water weed," and the release of C. aquaticum was proposed as a form of biological control. Morphometric variation on the chromosomally differentiated populations from the middle and lower Paraná River and its possible association with geographic, sex, and chromosomal conditions was analyzed. Significant phenotype variation in C. aquaticum population was detected. C. aquaticum presents body-size sexual dimorphism, females being bigger than males. Female-biased sexual size dimorphism for all five analyzed traits was detected. The assessment of variation in sexual size dimorphism for tegmen length showed that this trait scaled allometrically, indicating that males and females did not vary in a similar fashion. The detected allometry was consistent with Rensch's rule demonstrating greater evolutionary divergence in male size than in female size and suggests that males are more sensitive to environmental condition. The analysis of morphometric variation in the context of chromosome constitution showed that the presence of fusion 1/6 was related to body-size variation. Fusion carriers displayed bigger body size than standard homozygotes. Besides, a positive relationship between tegmen length and the number of fused chromosomes was detected, showing a chromosome dose effect. Because the highest frequency of fusions has been found in the lower Paraná River, a marginal environment for this species, the results found would support the hypothesis that some supergenes located in the fusions may be favored in the southern populations, thus contributing to the establishment and maintenance of the polymorphism.


Subject(s)
Body Size , Chromosomes, Insect , Grasshoppers/physiology , Animals , Argentina , Biometry , Female , Karyotype , Male , Phylogeography , Rivers , Sex Characteristics
2.
J Insect Sci ; 13: 43, 2013.
Article in English | MEDLINE | ID: mdl-23909914

ABSTRACT

This review focuses on grasshoppers that are polymorphic for Robertsonian translocations because in these organisms the clarity of meiotic figures allows the study of both chiasma distribution and the orientation of trivalents and multivalents in metaphase I. Only five species of such grasshoppers were found in the literature, and all of them were from the New World: Oedaleonotus enigma (Scudder) (Orthoptera: Acrididae), Leptysma argentina Bruner, Dichroplus pratensis Bruner, Sinipta dalmani Stål, and Cornops aquaticum Bruner. A general feature of these species (except O. enigma) is that fusion carriers suffer a marked reduction of proximal and interstitial (with respect to the centromere) chiasma frequency; this fact, along with the reduction in the number of linkage groups with the consequent loss of independent segregation, produces a marked decrease of recombination in fusion carriers. This reduction in recombination has led to the conclusion that Robertsonian polymorphic grasshopper species share some properties with inversion polymorphic species of Drosophila, such as the central-marginal pattern (marginal populations are monomorphic, central populations are highly polymorphic). This pattern might be present in D. pratensis, which is certainly the most complex Robertsonian polymorphism system in the present study. However, L. argentina and C. aquaticum do not display this pattern. This issue is open to further research. Since C. aquaticum is soon to be released in South Africa as a biological control, the latitudinal pattern found in South America may repeat there. This experiment's outcome is open and deserves to be followed.


Subject(s)
Biological Evolution , Chromosomes, Insect , Grasshoppers/genetics , Translocation, Genetic , Animals , Hybridization, Genetic , Meiosis , Polymorphism, Genetic
3.
Genet Mol Biol ; 32(1): 91-5, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21637651

ABSTRACT

Trivalents resulting from polymorphic Robertsonian rearrangements must have a regular orientation in metaphase I if the polymorphisms are to be maintained. It has been argued that redistribution of proximal and interstitial chiasmata to more distal positions is necessary for a convergent orientation, the only one that produces viable gametes. Cornops aquaticum is a South-American grasshopper that lives and feeds on water-hyacinths, and has three polymorphic Robertsonian rearrangements in its southernmost distribution area in Central Argentina and Uruguay. The orientation of trivalents in metaphase I, the formation of abnormal spermatids and the frequency and position of chiasmata in the trivalents, was analysed in a polymorphic population of C. aquaticus. In this study we observed a correlation between the number of trivalents with the frequency of abnormal spermatids; additionally, the number of chiasmata, especially proximal and interstitial ones, was strongly correlated with the frequency of the linear orientation. Therefore we confirmed our previous assumption, based on other evidence, that the chiasmata redistribution in fusion carriers is essential to the maintenance of the polymorphisms.

4.
Genet. mol. biol ; 32(1): 91-95, 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-505772

ABSTRACT

Trivalents resulting from polymorphic Robertsonian rearrangements must have a regular orientation in metaphase I if the polymorphisms are to be maintained. It has been argued that redistribution of proximal and interstitial chiasmata to more distal positions is necessary for a convergent orientation, the only one that produces viable gametes. Cornops aquaticum is a South-American grasshopper that lives and feeds on water-hyacinths, and has three polymorphic Robertsonian rearrangements in its southernmost distribution area in Central Argentina and Uruguay. The orientation of trivalents in metaphase I, the formation of abnormal spermatids and the frequency and position of chiasmata in the trivalents, was analysed in a polymorphic population of C. aquaticus. In this study we observed a correlation between the number of trivalents with the frequency of abnormal spermatids; additionally, the number of chiasmata, especially proximal and interstitial ones, was strongly correlated with the frequency of the linear orientation. Therefore we confirmed our previous assumption, based on other evidence, that the chiasmata redistribution in fusion carriers is essential to the maintenance of the polymorphisms.


Subject(s)
Animals , Grasshoppers/genetics , Metaphase/genetics , Translocation, Genetic , Heterozygote , Polymorphism, Genetic , Spermatids
5.
Cladistics ; 21(4): 375-389, 2005 Aug.
Article in English | MEDLINE | ID: mdl-34892970

ABSTRACT

The neotropical genus Dichroplus and related genera are characterized by a relatively uniform external morphology and a remarkably divergent male genitalia and hence its taxonomy is controversial. It also shows an extreme karyotypic diversification. In this study we used molecular and morphological characters to test the monophyly of the genus and to evaluate chromosome evolution. Twenty-seven species from Dichroplus and related genera were included in the analysis. Morphological characters refer to the general morphology, male genitalia and female structures. Molecular studies were performed, sequencing part of two mitochondrial genes, cytochrome oxidase I and II. Independent and combined phylogenetic analyses of the data were performed under maximum parsimony. The karyotypic characters (rearrangements) were either mapped onto the combined topology or combined with the other data sets. While the molecular analysis confirms some results attained with morphology, some others do not. All point towards the paraphyly of the genus. Our results show the relevance of morphological data in phylogenetic studies because morphology and molecules supply complementary evidence. The mapping of chromosome characters on the combined tree shows that the most extreme karyotype, in D. silveiraguidoi, is a derived condition, probably reached through several centric fusions, and that X-autosome centric fusions were recurrently fixed during the evolution of the group.

SELECTION OF CITATIONS
SEARCH DETAIL
...