Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Atmos Environ (1994) ; 43(36): 5750-5758, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20339526

ABSTRACT

Effects of physical/environmental factors on fine particle (PM(2.5)) exposure, outdoor-to-indoor transport and air exchange rate (AER) were examined. The fraction of ambient PM(2.5) found indoors (F(INF)) and the fraction to which people are exposed (alpha) modify personal exposure to ambient PM(2.5). Because F(INF), alpha, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM(2.5) exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in F(INF) and alpha, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in F(INF) and alpha, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict F(INF) and alpha. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ.Total personal exposures to PM(2.5) mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R(2) = 30-70%) and the largest contributor to (20-90%) indoor and personal exposures for PM(2.5) mass and most species. Several activities had a dramatic impact on personal PM(2.5) mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM(2.5)) improved the predictive power of the personal activity model for PM(2.5) mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.

2.
Res Rep Health Eff Inst ; (130 Pt 2): 1-77; discussion 79-92, 2007 Aug.
Article in English | MEDLINE | ID: mdl-18064946

ABSTRACT

During the study Relationships of Indoor, Outdoor, and Personal Air (RIOPA*), 48-hour integrated indoor, outdoor, and personal air samples were collected between summer 1999 and spring 2001 in three different areas of the United States: Elizabeth NJ, Houston TX, and Los Angeles County CA. Air samples suitable for analyzing particulate matter 2.5 microm or smaller in aerodynamic diameter (PM2.5) were collected in 219 homes (twice in 169 homes). Indoor and outdoor air samples suitable for gas-phase and particle-phase organic analyses were collected in 152 homes (twice in 132 homes). Samples or subsets of samples were analyzed for PM2.5 mass, organic functional groups, elements, organic carbon (OC), elemental carbon (EC), gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs), and chlordanes. Air exchange rate (AER), temperature, and relative humidity were measured for each residence; questionnaire data and time-activity information were collected from the participants. Median indoor, outdoor, and personal PM2.5 mass concentrations were 14.4, 15.5, and 31.4 microg/m3, respectively. Personal PM2.5 concentrations were significantly higher and more variable than indoor and outdoor concentrations. Several approaches were applied to quantify indoor PM2.5 of ambient (outdoor) and nonambient (indoor) origin, some using PM2.5 mass concentrations and others using PM2.5 species concentrations. PM of outdoor origin was estimated in three ways using increasingly accurate assumptions. Comparing estimates from the three approaches enabled us to quantify several types of errors that may be introduced when central-site PM concentrations are used as surrogate estimates for PM exposure. Estimates made using individual measurements produced broader distributions and higher means than those made using a single infiltration factor for all homes and days. The best estimate (produced by the robust regression approach) of the mean contribution of outdoor PM2.5 to the indoor mass concentration was 73% and to personal exposure was 26%. Possible implications of exposure error for epidemiologic assessments of PM are discussed below. Organic particulate matter was the major constituent of PM2.5 generated indoors. After correcting for artifacts, it constituted 48%, 55%, and 61% of PM2.5 mass inside study homes in Los Angeles, Elizabeth, and Houston, respectively. At least 40% but probably closer to 75% of this organic matter, on average, was emitted or formed indoors. Functional group analysis provided some insights into the composition and properties of the indoor-generated organic PM2.5. Chlordane, a very minor but mutagenic semivolatile organic mixture previously used as a termiticide, was found to be mostly of indoor origin. High emission rates were most frequently found in homes built from 1945 to 1959. Analysis of the change in gas-particle partitioning during transport of outdoor PAHs to indoor environments illustrated that chemical thermodynamics can alter the concentration and composition of outdoor PM as it is transported indoors. (This has been previously noted for nitrate [Lunden et al 2003].) In epidemiologic studies that rely on central-site monitoring data, such transformations may result in measurement error, and this possibility warrants further investigation.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Particulate Matter/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Environmental Monitoring , Female , Humans , Los Angeles , Male , Middle Aged , New Jersey , Organic Chemicals/analysis , Particle Size , Spectroscopy, Fourier Transform Infrared , Surveys and Questionnaires , Texas , Urban Health
3.
Environ Sci Technol ; 41(21): 7315-21, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-18044505

ABSTRACT

The indoor environment is an important venue for exposure to fine particulate matter (PM2.5) of ambient (outdoor) origin. In this work, paired indoor and outdoor PM2.5 species concentrations from three geographically distinct cities (Houston, TX, Los Angeles County, CA, and Elizabeth, NJ) were analyzed using positive matrix factorization (PMF) and demonstrate that the composition and source contributions of ambient PM2.5 are substantially modified by outdoor-to-indoor transport. Our results suggest that predictions of "indoor PM2.5 of ambient origin" are improved when ambient PM2.5 is treated as a combination of four distinct particle types with differing infiltration behavior (primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM) rather than as a "single internally mixed entity". Study-wide average infiltration factors (i.e., fraction of ambient PM2.5 found indoors) for Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study homes were 0.51, 0.78, and 0.04 (consistent with P = 0.6, 0.9, and 0.09; k = 0.2, 0.1, and 0.6 h(-1)) for PM2.5 associated with primary combustion, secondary formation (excluding nitrate), and mechanical generation, respectively. Modification of the composition, properties, and source contributions of ambient PM2.5 in indoor environments has important implications for exposure mitigation strategies, development of health hypotheses, and evaluation of exposure error in epidemiological studies that use ambient central-site PM2.5 as a surrogate for PM2.5 exposure.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Particulate Matter/analysis , Carbon/analysis , Environmental Monitoring , Housing , Los Angeles , Metals/analysis , New Jersey , Particle Size , Seawater , Silicon/analysis , Soil , Texas
4.
Environ Sci Technol ; 40(13): 4074-82, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16856719

ABSTRACT

Ambient volatile organic compound concentrations outside residences were measured in Elizabeth, New Jersey as part of the Relationship of Indoor, Outdoor, and Personal A:r (RIOPA) study to assess the influence of proximity of the residences to known ambient emissions sources. The closest distances between the outdoor samplers and emission sources were determined using Geographic Information Systems (GIS)techniques. Multiple regression models were developed for residential ambient concentrations of aromatic hydrocarbons (BTEX), methyl tert butyl ether (MTBE), and tetrachloroethylene (PCE). The natural log transformed ambient concentrations of BTEX were inversely associated with distances to major roadways with high traffic densities and gasoline stations, atmospheric stability, temperature, and wind speed. Ambient MTBE levels were associated with inverse distance to gas stations and interstate highways. Residential ambient PCE concentration was inversely associated with distance to dry cleaning facilities, atmospheric stability, temperature, wind speed, and relative humidity. The linear regression models that include proximity to emission sources and meteorological variables explained 16-45% of the overall variation of ambient residential VOC concentrations. Meteorological conditions, especially atmospheric stability and temperature, explained 60-90% of the total variation in the regression models. The residential ambient air concentrations were 1.5-4 times higher than the urban background levels outside homes very close (<50 m) to ambient emission sources where approximately 7% of the population live. However, the relative increase of risk for disease is small and variations in air concentration in the background urban atmosphere are greater than those from the proximity to roadways.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Geography , Hydrocarbons, Aromatic/analysis , Methyl Ethers/analysis , Models, Theoretical , New Jersey , Regression Analysis , Risk Assessment , Temperature , Tetrachloroethylene/analysis , Wind
5.
J Expo Sci Environ Epidemiol ; 16(4): 321-31, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16538235

ABSTRACT

Residential indoor and outdoor fine particle (PM(2.5)) organic (OC) and elemental carbon (EC) concentrations (48 h) were measured at 173 homes in Houston, TX, Los Angeles County, CA, and Elizabeth, NJ as part of the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study. The adsorption of organic vapors on the quartz fiber sampling filter (a positive artifact) was substantial indoors and out, accounting for 36% and 37% of measured OC at the median indoor (8.2 microg C/m(3)) and outdoor (5.0 microg C/m(3)) OC concentrations, respectively. Uncorrected, adsorption artifacts would lead to substantial overestimation of particulate OC both indoors and outdoors. After artifact correction, the mean particulate organic matter (OM=1.4 OC) concentration indoors (9.8 microg/m(3)) was twice the mean outdoor concentration (4.9 microg/m(3)). The mean EC concentration was 1.1 microg/m(3) both indoors and outdoors. OM accounted for 29%, 30% and 29% of PM(2.5) mass outdoors and 48%, 55% and 61% of indoor PM(2.5) mass in Los Angeles Co., Elizabeth and Houston study homes, respectively. Indirect evidence provided by species mass balance results suggests that PM(2.5) nitrate (not measured) was largely lost during outdoor-to-indoor transport, as reported by Lunden et al. This results in dramatic changes with outdoor-to-indoor transport in the mass and composition of ambient-generated PM(2.5) at California homes. On average, 71% to 76% of indoor OM was emitted or formed indoors, calculated by (1) Random Component Superposition (RCS) model and (2) non-linear fit of OC and air exchange rate data to the mass balance model. Assuming that all particles penetrate indoors (P=1) and there is no particle loss indoors (k=0), a lower bound estimate of 41% of indoor OM was indoor-generated (mean). OM appears to be the predominant species in indoor-generated PM(2.5), based on species mass balance results. Particulate OM emitted or formed indoors is substantial enough to alter the concentration, composition and behavior of indoor PM(2.5). One interesting effect of increased indoor OM concentrations is a shift in the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) from the gas to the particle phase with outdoor-to-indoor transport.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure , Housing , Organic Chemicals/analysis , Aerosols , Environmental Monitoring , Los Angeles , Models, Theoretical , New Jersey , Particle Size , Texas , Urban Population
6.
J Air Waste Manag Assoc ; 55(10): 1418-30, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16295266

ABSTRACT

Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.


Subject(s)
Environment , Environmental Exposure , Transportation , Air Pollutants, Occupational/analysis , California , Carbon/analysis , Child , Humans , Nitrogen Dioxide/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Schools
7.
Environ Sci Technol ; 39(14): 5105-12, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16082937

ABSTRACT

Epidemiological studies routinely use central-site particulate matter (PM) as a surrogate for exposure to PM of ambient (outdoor) origin. Below we quantify exposure errors that arise from variations in particle infiltration to aid evaluation of the use of this surrogate, rather than actual exposure, in PM epidemiology. Measurements from 114 homes in three cities from the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study were used. Indoor PM2.5 of outdoor origin was calculated as follows: (1) assuming a constant infiltration factor, as would be the case if central-site PM were a "perfect surrogate" for exposure to outdoor particles; (2) including variations in measured air exchange rates across homes; (3) also incorporating home-to-home variations in particle composition, and (4) calculating sample-specific infiltration factors. The final estimates of PM2.5 of outdoor origin take into account variations in building construction, ventilation practices, and particle properties that result in home-to-home and day-to-day variations in particle infiltration. As assumptions became more realistic (from the first, most constrained model to the fourth, least constrained model), the mean concentration of PM2.5 of outdoor origin increased. Perhaps more importantly, the bandwidth of the distribution increased. These results quantify several ways in which the use of central site PM results in underestimates of the ambient PM2.5 exposure distribution bandwidth. The result is larger uncertainties in relative risk factors for PM2.5 than would occur if epidemiological studies used more accurate exposure measures. In certain situations this can lead to bias.


Subject(s)
Air Pollutants/poisoning , Air Pollution, Indoor/adverse effects , Epidemiologic Studies , Facility Design and Construction , Filtration , Humans , Particle Size , Reproducibility of Results , Ventilation
8.
Res Rep Health Eff Inst ; (130 Pt 1): 1-107; discussion 109-27, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16454009

ABSTRACT

This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter < or = 2.5 microm (PM2.5), were measured during continuous 48-hour sessions in which indoor, outdoor, and personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and personal concentrations. The results show that indoor sources dominated personal and indoor air concentrations of many measured VOCs and carbonyl compounds. For several measured species, personal concentrations were higher than either indoor or outdoor concentrations, indicating the presence of some sources closely related to personal activities. For some species there were no significant indoor sources in the majority of the homes; thus indoor concentrations were mainly determined by outdoor concentrations in these homes. The range of distributions of air concentrations for the measured VOCs, formaldehyde and acetaldehyde, PM2.5, and AERs were generally consistent with values reported previously in the literature. Thus associations derived from or models based on this data set that may link the influence of outdoor sources with indoor air concentrations of air toxics and PM2.5 can be relevant to other urban settings. The simultaneous measurements of indoor concentrations, outdoor concentrations, AERs, and room volumes allowed the use of a mass balance model, under the steady-state approximation, to mechanistically examine the relative contributions of indoor and outdoor sources to measured indoor concentrations on a home-by-home basis. Estimated indoor source strengths for VOCs and carbonyl compounds varied widely from home to home, consistent with the indoor-outdoor concentration patterns, as shown in scatter plots. The indoor source estimations agreed with published values for PM2.5 and with the general understanding of sources of VOCs and carbonyl compounds. The source strengths reported here, derived from hundreds of homes, are an important contribution to the literature on exposure to air toxics. For the first time for many compounds, these estimates present a cohesive set of measurements across a range of air toxics in paired indoor, outdoor, and personal samples along with AER and questionnaire results that can be used for future analyses of indoor air quality. The estimation of outdoor contributions to measured indoor concentrations provides insights about the relative importance of indoor and outdoor sources in determining indoor concentrations, the main determinant of personal exposure for most of the measured compounds. In this report simple statistical tests mainly of the pooled data were used to analyze differences by sampling site, emission source type, season, home type, and home age. Paired adult-child personal concentrations within the same home were also compared using the pooled data set. These analyses generated some intriguing results that warrant more in-depth investigation in the future.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Air Movements , Humans , Organic Chemicals/analysis , Particle Size , Quality Control , Reproducibility of Results , Surveys and Questionnaires , United States , Urban Health , Volatilization
9.
J Expo Anal Environ Epidemiol ; 15(2): 123-37, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15213705

ABSTRACT

The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Movements , Environmental Monitoring , Humans , Organic Chemicals/analysis , Particle Size , Quality Control , Reproducibility of Results , Research Design , Volatilization
10.
J Expo Anal Environ Epidemiol ; 15(1): 17-28, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15138449

ABSTRACT

The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure , Models, Theoretical , Environmental Monitoring , Housing , Humans , Organic Chemicals/analysis , Particle Size , Seasons , Urban Population , Volatilization
11.
J Expo Anal Environ Epidemiol ; 15(5): 377-87, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15592444

ABSTRACT

Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure , Vehicle Emissions/analysis , Child , Child Welfare , Environmental Monitoring , Fossil Fuels , Humans , Los Angeles , Motor Vehicles , Rural Population , Students , Urban Population
12.
Environ Sci Technol ; 38(10): 2760-8, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15212248

ABSTRACT

Indoor and outdoor concentrations of six chlordane components (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane, and MC5) were measured at 157 residences, all of which were inhabited by nonsmoking individuals, in three urban areas during June 1999-May 2000. The analyses were conducted on a subset of 48 h integrated samples collected in Los Angeles County, CA, Houston, TX, and Elizabeth, NJ within the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. Both particle-bound (PM2.5; quartz fiber filter) and vapor-phase (PUF sorbant) chlordane concentrations were separately measured by GC/EI MS after solvent extraction. The outdoor (gas + particle) total chlordane (trans-chlordane + cis-chlordane + trans-nonachlor + cis-nonachlor) concentrations ranged from 0.036 to 4.27 ng m(-3) in Los Angeles County, from 0.008 to 11.00 ng m(-3) in Elizabeth, and from 0.062 to 1.77 ng m(-3) in Houston. The corresponding indoor total chlordane concentrations ranged from 0.037 to 112.0 ng m(-3) in Los Angeles County, from 0.260 to 31.80 ng m(-3) in Elizabeth, and from 0.410 to 38.90 ng m(-3) in Houston study homes. Geometric mean concentrations were higher in indoor air than outdoor air (1.98 vs 0.58 ng m(-3) in CA; 1.30 vs 0.17 ng m(-3) in NJ; 4.18 vs 0.28 ng m(-3) in TX), which suggests there are significant indoor sources of chlordane species in a subset of homes in each of the three cities. Calculated source strengths relate to home age, with the highest apparent indoor source strengths occurring in unattached single-family homes built during the period from 1945 to 1959. Principle indoor sources of chlordanes likely include volatilization from residues of indoor application of chlordanes and infiltration from subsurface and foundation application of chlordane-containing termiticides during home construction.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Chlordan/analysis , Housing , Insecticides/analysis , Atmosphere/chemistry , Chlordan/chemistry , Cities , Climate , Isomerism , Los Angeles , New Jersey , Particle Size , Texas , Urban Health
13.
J Expo Anal Environ Epidemiol ; 14(1): 44-59, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14726944

ABSTRACT

Recent state and federal public school class-size reduction initiatives, increased elementary and pre-K enrollment driven by population growth and immigration, and limited resources for capital projects, modernization, and maintenance at aging schools have increased the prevalence of prefabricated, portable classrooms (portables). At present, approximately one of three California students are taught in portables, whose use is especially prevalent in more populated counties such as Los Angeles, home to the nation's second largest school district. Limited data existed on chemical compound air concentrations, and thus exposures, inside American public schools. Measurements have been limited, usually performed in complaint schools, and varied in sampling protocols and analysis methods. To address a school environment and children's health issue of present concern, an assessment of public school portables was conducted in Los Angeles County. Seven schools in two school districts were recruited, from which 20 classrooms--13 portables, seven in main buildings--were randomly selected. We report indoor air concentrations of 21 target toxic and odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, measured with passive samplers (DNSH PAKS and 3M OVM 3500) in the cooling and heating seasons between June 2000 and June 2001. None of the measured indoor air formaldehyde concentrations exceeded the existing California Air Resources Board guideline (50 ppb, or 60 microg/m(3)). The main sources of aldehydes in classrooms, especially portables, were likely interior finish materials and furnishings made of particleboard without lamination. Indoor air VOC concentrations were generally low in this pilot study. The four most prevalent VOCs measured were toluene, m-/p-xylene, alpha-pinene, and delta-limonene; likely indoor sources were personal, teaching, and cleaning products. Future schools research should attempt larger samples over larger geographical areas.


Subject(s)
Air Pollution, Indoor/analysis , Organic Chemicals/analysis , Schools , Ventilation , Acetaldehyde/analysis , Air Conditioning , Environmental Monitoring/methods , Formaldehyde/analysis , Humans , Los Angeles , Organic Chemicals/chemistry , Pilot Projects , Temperature , Volatilization
14.
Environ Sci Technol ; 36(12): 2552-9, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12099449

ABSTRACT

The indoor and outdoor concentrations of 30 polycyclic aromatic hydrocarbons (PAHs) were measured in 55 nonsmoking residences in three urban areas during June 1999-May 2000. The data represent the subset of samples collected within the Relationship of Indoor, Outdoor, and Personal Air study (RIOPA). The study collected samples from homes in Los Angeles, CA, Houston, TX, and Elizabeth, NJ. In the outdoor samples, the total PAH concentrations (sigmaPAH) were 4.2-64 ng m(-3) in Los Angeles, 10-160 ng m(-3) in Houston, and 12-110 ng m(-3) in Elizabeth. In the indoor samples, the concentrations of sigmaPAH were 16-220 ng m(-3) in Los Angeles, 21-310 ng m(-3) in Houston, and 22-350 ng m(-3) in Elizabeth. The PAH profiles of low molecular weight PAHs (3-4 rings) in the outdoor samples from the three cities were not significantly different. In contrast, the profiles of 5-7-ring PAHs in thesethree citieswere significantlydifferent, which suggested different dominant PAH sources. The signatures of 5-7-ring PAHs in the indoor samples in each city were similar to the outdoor profiles, which suggested that indoor concentrations of 5-7-ring PAHs were dominated by outdoor sources. Indoor-to-outdoor ratios of the PAH concentrations showed that indoor sources had a significant effect on indoor concentrations of 3-ring PAHs and a smaller effect on 4-ring PAHs and that outdoor sources dominated the indoor concentrations of 5-7-ring PAHs.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Cities , Environmental Monitoring , Reference Values , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...