Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Oncogenesis ; 10(1): 5, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33419981

ABSTRACT

MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.

3.
Cancers (Basel) ; 12(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526907

ABSTRACT

High grade serous ovarian cancer (HGSOC) is a major cause of female cancer mortality. The approval of poly (ADP-ribose) polymerase (PARP) inhibitors for clinical use has greatly improved treatment options for patients with homologous recombination repair (HRR)-deficient HGSOC, although the development of PARP inhibitor resistance in some patients is revealing limitations to outcome. A proportion of patients with HRR-proficient cancers also benefit from PARP inhibitor therapy. Our aim is to compare mechanisms of resistance to the PARP inhibitor olaparib in these two main molecular categories of HGSOC and investigate a way to overcome resistance that we considered particularly suited to a cancer like HGSOC, where there is a very high incidence of TP53 gene mutation, making HGSOC cells heavily reliant on the G2 checkpoint for repair of DNA damage and survival. We identified alterations in multiple factors involved in resistance to PARP inhibition in both HRR-proficient and -deficient cancers. The most frequent change was a major reduction in levels of poly (ADP-ribose) glycohydrolase (PARG), which would be expected to preserve a residual PARP1-initiated DNA damage response to DNA single-strand breaks. Other changes seen would be expected to boost levels of HRR of DNA double-strand breaks. Growth of all olaparib-resistant clones isolated could be controlled by WEE1 kinase inhibitor AZD1775, which inactivates the G2 checkpoint. Our work suggests that use of the WEE1 kinase inhibitor could be a realistic therapeutic option for patients that develop resistance to olaparib.

4.
Cancer Drug Resist ; 3(3): 482-490, 2020.
Article in English | MEDLINE | ID: mdl-35582445

ABSTRACT

Cancer therapy has improved considerably in the last years; however, therapeutic resistance is still a major problem that impedes full response to the treatment and the main cause of patient relapse and death. Numerous kinases have been reported to be overactivated in cancer and induce resistance to current therapies. Targeting kinases has proven to be useful for overcoming chemotherapy resistance and thus improving patient outcomes. Inhibitor of kappaB kinase alpha (IKKα) is a serine/threonine kinase that was first described as part of the IKK complex in the nuclear factor-κB (NF-κB) pathway, which regulates several physiological and physiopathological processes such as immunity, inflammation, and cancer. However, the IKKα subunit has been shown to be dispensable for NF-κB activation and responsible of multiple pro-tumorigenic functions. Furthermore, we identified a nuclear active form of IKKα kinase IKKα(p45) that promotes tumor growth and therapy resistance, independent of canonical NF-κB. Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Here, we review the recent publications on the implications of IKKα in cancer initiation, development, and resistance.

5.
Mol Cell ; 75(4): 669-682.e5, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31302002

ABSTRACT

Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.


Subject(s)
DNA Damage , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , I-kappa B Kinase/metabolism , Irinotecan/pharmacology , MAP Kinase Signaling System , Neoplasm Proteins , Neoplasms , Animals , DNA Repair/drug effects , DNA Repair/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , HCT116 Cells , Humans , I-kappa B Kinase/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Telomere/genetics , Telomere/metabolism , Xenograft Model Antitumor Assays
6.
Nat Commun ; 9(1): 2992, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065304

ABSTRACT

Delta ligands regulate Notch signaling in normal intestinal stem cells, while Jagged1 activates Notch in intestinal adenomas carrying active ß-catenin. We used the ApcMin/+ mouse model, tumor spheroid cultures, and patient-derived orthoxenografts to address this divergent ligand-dependent Notch function and its implication in disease. We found that intestinal-specific Jag1 deletion or antibody targeting Jag1 prevents tumor initiation in mice. Addiction to Jag1 is concomitant with the absence of Manic Fringe (MFNG) in adenoma cells, and its ectopic expression reverts Jag1 dependence. In 239 human colorectal cancer patient samples, MFNG imposes a negative correlation between Jag1 and Notch, being high Jag1 in the absence of MFNG predictive of poor prognosis. Jag1 antibody treatment reduces patient-derived tumor orthoxenograft growth without affecting normal intestinal mucosa. Our data provide an explanation to Jag1 dependence in cancer, and reveal that Jag1-Notch1 interference provides therapeutic benefit in a subset of colorectal cancer and FAP syndrome patients.


Subject(s)
Hexosyltransferases/metabolism , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein/metabolism , Membrane Proteins/metabolism , Proteins/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glucosyltransferases , Humans , Ligands , Mice , Models, Biological , Prognosis , Receptor, Notch1/metabolism , Signal Transduction , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Stem Cells/metabolism , Transcription, Genetic
7.
Br J Cancer ; 118(6): 839-846, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29438366

ABSTRACT

BACKGROUND: Colorectal cancer is a common cause of death in developed countries. Progression from adenoma to invasive carcinoma requires accumulation of mutations starting with the Adenomatous Polyposis Coli (Apc) gene. NF-κB signalling is a key element in cancer, mainly related to the activity of IKKß. IKKα kinase also participates in this process by mechanisms that are primarily unknown. METHODS: We generated a compound mouse model with mutation in Apc and lacking intestinal epithelial IKKα, produced intestinal organoids and tumour spheroids with different genetic backgrounds, and performed immunohistochemistry and RNA-seq analysis. RESULTS: Deficiency of IKKα prevents adenoma formation, with adenomas lacking IKKα showing reduced proliferation. In contrast, IKKα status did not affect normal intestinal function. The same divergent phenotype was found in the organoid-spheroid model. We also found that epithelial IKKα controls stemness, proliferation and apoptosis-related expression. CONCLUSIONS: IKKα is a potential therapeutic target for Apc mutant colorectal cancer patients.


Subject(s)
Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , I-kappa B Kinase/deficiency , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Proliferation/physiology , Colorectal Neoplasms/genetics , I-kappa B Kinase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Nat Commun ; 9(1): 101, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317652

ABSTRACT

Sirtuins are NAD+-dependent deacetylases that facilitate cellular stress response. They include SirT6, which protects genome stability and regulates metabolic homeostasis through gene silencing, and whose loss induces an accelerated aging phenotype directly linked to hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved cysteines in the PRE-SET domain of Suv39h1. Following activation of NF-κB signaling Suv39h1 is released from the IκBα locus, subsequently repressing the NF-κB pathway. We propose that SirT6 attenuates the NF-κB pathway through IκBα upregulation via cysteine monoubiquitination and chromatin eviction of Suv39h1. We suggest a mechanism based on SirT6-mediated enhancement of a negative feedback loop that restricts the NF-κB pathway.


Subject(s)
Cysteine/metabolism , Methyltransferases/metabolism , NF-kappa B/metabolism , PR-SET Domains , Repressor Proteins/metabolism , Sirtuins/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Cysteine/genetics , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Methyltransferases/genetics , Mice , NF-KappaB Inhibitor alpha/metabolism , NIH 3T3 Cells , Protein Binding , Repressor Proteins/genetics , Signal Transduction , Sirtuins/genetics , Ubiquitination , Up-Regulation
9.
Biomedicines ; 5(2)2017 May 25.
Article in English | MEDLINE | ID: mdl-28587092

ABSTRACT

Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.

10.
Sci Signal ; 8(373): ra38, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25900832

ABSTRACT

KRAS mutations contribute to cell proliferation and survival in numerous cancers, including colorectal cancers (CRC). One pathway through which mutant KRAS acts is an inflammatory pathway that involves the kinase IKK and activates the transcription factor NF-κB. BRAF, a kinase that is downstream of KRAS, is mutated in a subset of CRC and is predictive of poor prognosis and therapeutic resistance. We found that, in contrast to mutant KRAS, mutant BRAF (BRAF(V600E)) did not trigger NF-κB activation but instead triggered the phosphorylation of a proteolytic fragment of IKKα (p45-IKKα) in CRC cells. BRAF(V600E) CRC cells had a high abundance of phosphorylated p45-IKKα, which was decreased by a RAF inhibitor. However, the abundance and DNA binding of NF-κB in these cells were unaffected by the RAF inhibitor, and expression of BRAF(V600E) in human embryonic kidney-293T cells did not activate an NF-κB reporter. Moreover, BRAF-induced transformation of NIH-3T3 cells and BRAF-dependent transcription required phosphorylation of p45-IKKα. The kinase TAK1, which was associated with the endosomal compartment, phosphorylated p45-IKKα. Inhibition of endosomal vacuolar adenosine triphosphatase (V-ATPase) with chloroquine or bafilomycin A1 blocked p45-IKKα phosphorylation and induced apoptosis in BRAF-mutant CRC cells independent of autophagy. Treating mice with V-ATPase inhibitors reduced the growth and metastasis of BRAF(V600E) xenograft tumors in the cecum of mice.


Subject(s)
I-kappa B Kinase/metabolism , NF-kappa B p50 Subunit/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic , Chloroquine/chemistry , DNA/chemistry , Dose-Response Relationship, Drug , Endosomes/metabolism , HEK293 Cells , Humans , Inflammation , Macrolides/chemistry , Mice , Mice, Knockout , Mutation , NIH 3T3 Cells , Neoplasm Metastasis , Neoplasm Transplantation , Phosphorylation , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...