Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(4): e0249486, 2021.
Article in English | MEDLINE | ID: mdl-33798233

ABSTRACT

High-Grade Gliomas (HGG) are the most frequent brain tumor in adults. The gold standard of clinical care recommends beginning chemoradiation within 6 weeks of surgery. Disparities in access to healthcare in Argentina are notorious, often leading to treatment delays. We conducted this retrospective study to evaluate if time to chemoradiation after surgery is correlated with progression-free survival (PFS). Our study included clinical cases with a histological diagnosis of Glioblastoma (GBM), Anaplastic Astrocytoma (AA) or High-Grade Glioma (HGG) in patients over 18 years of age from 2014 to 2020. We collected data on clinical presentation, type of resection, time to surgery, time to chemoradiation, location within the Buenos Aires Metropolitan Area (BAMA) and type of health insurance. We found 63 patients that fit our inclusion criteria, including 26 (41.3%) females and 37 (58.7%) males. Their median age was 54 years old (19-86). Maximal safe resection was achieved in 49.2% (n = 31) of the patients, incomplete resection in 34.9% (n = 22) and the other 15.9% (n = 10) received a biopsy, but no resection. The type of health care insurance was almost evenly divided, with 55.6% (n = 35) of the patients having public vs. 44.4% (n = 28) having private health insurance. Median time to chemoradiation after surgery was 8 (CI 6.68-9.9) weeks for the global population. When we ordered the patients PFS by time to chemoradiation we found that there was a statistically significant effect of time to chemoradiation on patient PFS. Patients had a PFS of 10 months (p = 0.014) (CI 6.89-13.10) when they received chemoradiation <5 weeks vs a PFS of 7 months (CI 4.93-9.06) when they received chemoradiation between 5 to 8 weeks and a PFS of 4 months (CI 3.76-4.26 HR 2.18 p = 0.006) when they received chemoradiation >8 weeks after surgery. Also, our univariate and multivariate analysis found that temporal lobe location (p = 0.03), GMB histology (p = 0.02) and biopsy as surgical intervention (p = 0.02) all had a statistically significant effect on patient PFS. Thus, time to chemoradiation is an important factor in patient PFS. Our data show that although an increase in HGG severity contributes to a decrease in patient PFS, there is also a large effect of time to chemoradiation. Our results suggest that we can improve patient PFS by making access to healthcare in Buenos Aires more equitable by reducing the average time to chemoradiation following tumor resection.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/therapy , Chemoradiotherapy , Glioma/pathology , Glioma/therapy , Adolescent , Adult , Argentina , Female , Humans , Male , Middle Aged , Neoplasm Grading , Progression-Free Survival , Retrospective Studies , Time Factors
2.
PLoS One ; 7(6): e39616, 2012.
Article in English | MEDLINE | ID: mdl-22761843

ABSTRACT

Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Models, Theoretical , Temporal Lobe/pathology , Adult , Computer Simulation , Disease Progression , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...