Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(23): 12009-12016, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771331

ABSTRACT

We report here an experimental-computational study of hydrated TiO2 anatase nanoparticles interacting with glycine, where we obtain quantitative agreement of the measured adsorption free energies. Ab initio simulations are performed within the tight binding and density functional theory in combination with enhanced free-energy sampling techniques, which exploit the thermodynamic integration of the unbiased mean forces collected on-the-fly along the molecular dynamics trajectories. The experiments adopt a new and efficient setup for electrochemical impedance spectroscopy measurements based on portable screen-printed gold electrodes, which allows fast and in situ signal assessment. The measured adsorption free energy is -30 kJ/mol (both from experiment and calculation), with preferential interaction of the charged NH3+ group which strongly adsorbs on the TiO2 bridging oxygens. This highlights the importance of the terminal amino groups in the adsorption mechanism of amino acids on hydrated metal oxides. The excellent agreement between computation and experiment for this amino acid opens the doors to the exploration of the interaction free energies for other moderately complex bionano systems.

2.
Article in English | MEDLINE | ID: mdl-38640070

ABSTRACT

The last decade has been incredibly fruitful in proving the multifunctionality of paper for delivering innovative electrochemical (bio)sensors. The paper material exhibits unprecedented versatility to deal with complex liquid matrices and facilitate analytical detection in aerosol and solid phases. Such remarkable capabilities are feasible by exploiting the intrinsic features of paper, including porosity, capillary forces, and its easy modification, which allow for the fine designing of a paper device. In this review, we shed light on the most relevant paper-based electrochemical (bio)sensors published in the literature so far to identify the smart functional roles that paper can play to bridge the gap between academic research and real-world applications in the biomedical, environmental, agrifood, and security fields. Our analysis aims to highlight how paper's multifarious properties can be artfully harnessed for breaking the boundaries of the most classical applications of electrochemical (bio)sensors.

3.
Int J Biol Macromol ; 253(Pt 8): 127409, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37848114

ABSTRACT

The use of paper as a smart support in the field of electrochemical sensors has been largely improved over the last 15 years, driven by its outstanding features such as foldability and porosity, which enable the design of reagent and equipment-free multi-analysis devices. Furthermore, the easy surface engineering of paper has been used to immobilize different bioreceptors, through physical adsorption, covalent bonding, and electrochemical polymerization, boosting the fine customization of the analytical performances of paper-based biosensors. In this review, we focused on the strategies to engineer the surface of the paper for the immobilization of (bio)recognition elements (eg., enzymes, antibodies, DNA, molecularly imprinted polymers) with the overriding goal to develop accurate and reliable paper-based electrochemical biosensors. Furthermore, we highlighted how to take advantage of paper for designing smart configurations by integrating different analytical processes in an eco-designed analytical tool, starting from the immobilization of the (bio)receptor and the reagents, through a designed sample flow along the device, until the analyte detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Molecularly Imprinted Polymers , Antibodies , Engineering
4.
Mikrochim Acta ; 189(8): 311, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35920941

ABSTRACT

The increasing demand for food and the need for a sustainability vision in the agri-food sector have boosted novel approaches for food management, enhancing the valorization of wastes and by-products belonging to the food industry. Herein, we present a novel paper-based origami device to assess the amount of both glucosinolate and glucose in a food waste product belonging to Brassicaceae plants, to evaluate the quality value and the correct management of waste samples. The device has been designed as an origami paper-based platform constituted of two paper-based biosensors to work synergistically in a multiplexed detection. In detail, a monoenzymatic biosensor and a bienzymatic biosensor were configured for the detection of glucose and glucosinolates, respectively, using filter paper pads preloaded with glucose oxidase and/or myrosinase. To complete the paper-based platform, the enzyme-preloaded pads were combined with office paper-based electrodes modified with Carbon black/Prussian Blue nanoparticles for the measurement of enzymatic by-product at a low applied potential (i.e., 0 V versus Ag/AgCl). Overall, this paper-based platform measured glucose and glucosinolate (i.e., sinigrin) with a linear range up to 2.5 and 1.5 mM, and detection limits of 0.05 and 0.07 mM, respectively. The repeatability corresponded to an RSD% equal to 5% by testing 10 mM of glucose, and 10% by testing 1 mM of sinigrin. The accuracy of the developed multiplex device was evaluated by recovery studies at two different levels of sinigrin, i.e., 0.25 and 0.5 mM, obtaining recoveries values equal to (111 ± 3) % and (86 ± 1) %, respectively. The multiplex detection of both glucose and glucosinolate in Brassicaceae samples evaluates the quality values of the waste sample, ensuring the quality of the re-used food product waste by using an eco-designed analytical tool. The combination of paper-based devices for quality control of food waste with the re-use of these food products represents a sustainable approach that perfectly matches sustainable agrifood practices as well as the overall approach of the circular economy.


Subject(s)
Glucosinolates , Refuse Disposal , Food , Glucose , Paper , Quality Control
5.
J Mater Chem B ; 10(44): 9021-9039, 2022 11 16.
Article in English | MEDLINE | ID: mdl-35899594

ABSTRACT

In the last few decades, nanomaterials have made great advances in the biosensor field, thanks to their ability to enhance several key issues of biosensing analytical tools, namely, sensitivity, selectivity, robustness, and reproducibility. The recent trend of sustainability has boosted the progress of novel and eco-designed electrochemical paper-based devices to detect easily the target analyte(s) with high sensitivity in complex matrices. The huge attention given by the scientific community and industrial sectors to paper-based devices is ascribed to the numerous advantages of these cost-effective analytical tools, including the absence of external equipment for solution flow, thanks to the capillary force of paper, the fabrication of reagent-free devices, because of the loading of reagents on the paper, and the easy multistep analyses by using the origami approach. Besides these features, herein we highlight the multifarious aspects of the nanomaterials such as (i) the significant enlargement of the electroactive surface area as well as the area available for the desired chemical interactions, (ii) the capability of anchoring biorecognition elements on the electrode surface on the paper matrix, (iii) the improvement of the conductivity of the cellulose matrix, (iv) the functionality of photoelectrochemical properties within the cellulose matrix, and (v) the improvement of electrochemical capabilities of conductive inks commonly used for electrode printing on the paper support, for the development of a new generation of paper-based electrochemical biosensors applied in the biomedical field. The state of the art over the last ten years has been analyzed highlighting the various functionalities that arise from the integration of nanomaterials with paper-based electrochemical biosensors for the detection of biomarkers.


Subject(s)
Biosensing Techniques , Nanostructures , Reproducibility of Results , Nanostructures/chemistry , Biomarkers , Cellulose
6.
Anal Chem ; 93(43): 14369-14374, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34669396

ABSTRACT

Corrosion occurring in reinforced concrete has turned into a primary concern of the current century, concrete being the most ubiquitous and predominant material used in the construction industry. Among the many interrelated processes that trigger corrosion of metallic reinforcements, the penetration of chloride ions into the concrete matrix is the most insidious threat. Herein, we developed the first electrochemical device entirely made of paper that allows for the direct, prompt, and noninvasive evaluation of free chloride ion contamination in concrete-based constructions. Our device is based on a three-layer wax-modified filter paper, consisting of two Ag/AgCl screen-printed electrodes that are interfaced by a junction pad in a sandwich-like configuration. Filter paper allows for generating a vertical-flow potentiometric device capable of measuring the electrochemical potential between two solutions containing different concentrations of chloride ions, which are separately drop-cast on the top and bottom layers. After demonstrating the analytical performance of the device, the same principle was applied to the evaluation of the chloride contents in different concrete samples, exploiting paper as a suitable interfacing material for potentiometric measurements on the cement solid surface. Laboratory-prepared concrete samples with known chloride contents were first assessed, and then, the paper-based vertical-flow device was applied to real concrete structures at the Giacomo Manzù Museum (Ardea, Italy) for the evaluation of chloride contamination caused by the proximity to the seaside. The capability of our device to provide timely warning of the risk conditions of concrete-based artifacts was demonstrated.

7.
Biosensors (Basel) ; 11(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34562920

ABSTRACT

In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Paper , Electrodes
8.
Anal Chem ; 93(12): 5225-5233, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33739824

ABSTRACT

The growth of (bio)sensors in analytical chemistry is mainly attributable to the development of affordable, effective, portable, and user-friendly analytical tools. In the field of sensors, paper-based devices are gaining a relevant position for their outstanding features including foldability, ease of use, and instrument-free microfluidics. Herein, a multifarious use of filter paper to detect copper ions in bodily fluids is reported by exploiting this eco-friendly material to (i) synthesize AuNPs without the use of reductants and/or external stimuli, (ii) print the electrodes, (iii) load the reagents for the assay, (iv) filter the gross impurities, and (v) preconcentrate the target analyte. Copper ions were detected down to 3 ppb with a linearity up to 400 ppb in standard solutions. The applicability in biological matrices, namely, sweat and serum, was demonstrated by recovery studies and by analyzing these biofluids with the paper-based platform and the reference method (atomic absorption spectroscopy), demonstrating satisfactory accuracy of the novel eco-designed analytical tool.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Copper , Gold , Ions , Sweat
9.
Environ Sci Pollut Res Int ; 28(20): 25069-25080, 2021 May.
Article in English | MEDLINE | ID: mdl-29934830

ABSTRACT

Herein, we report a novel paper-based electrochemical sensor for on-site detection of sulphur mustards. This sensor was conceived combining office paper-based electrochemical sensor with choline oxidase enzyme to deliver a sustainable sensing tool. The mustard agent detection relies on the evaluation of inhibition degree of choline oxidase, which is reversibly inhibited by sulphur mustards, by measuring the enzymatic by-product H2O2 in chronoamperometric mode. A nanocomposite constituted of Prussian Blue nanoparticles and Carbon Black was used as working electrode modifier to improve the electroanalytical performances. This bioassay was successfully applied for the measurement of a sulphur mustard, Yprite, obtaining a detection limit in the millimolar range (LOD = 0.9 mM). The developed sensor, combined with a portable and easy-to-use instrumentation, can be applied for a fast and cost-effective detection of sulphur mustards.


Subject(s)
Biosensing Techniques , Mustard Gas , Nanoparticles , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Limit of Detection
10.
Analyst ; 145(9): 3188-3210, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32239016

ABSTRACT

The monitoring of ammonium ion concentration has gained the attention of researchers from multiple fields since it is a crucial parameter with respect to environmental and biomedical applications. For example, ammonium is considered to be a quality indicator of natural waters as well as a potential biomarker of an enzymatic byproduct in key physiological reactions. Among the classical analytical methods used for the detection of ammonium ions, potentiometric ion-selective electrodes (ISEs) have attracted special attention in the scientific community because of their advantages such as cost-effectiveness, user-friendly features, and miniaturization ability, which facilitate easy portable measurements. Regarding the analytical performance, the key component of ISEs is the selective receptor, labelled as an ionophore in ISE jargon. Indeed, the preference of an ionophore for ammonium amongst other ions (i.e., selectivity) is a factor that primarily dictates the limit of detection of the electrode when performing measurements in real samples. A careful assessment of the literature for the last 20 years reveals that nonactin is by far the most employed ammonium ionophore to date. Despite the remarkable cross-interference of potassium over the ammonium response of nonactin-based ISEs, analytical applications comprising water quality assessment, clinical tests in biological fluids, and sweat monitoring during sports practice have been successfully researched. Nevertheless, there is evident difficulty in the determination of close-to-micromolar levels of ammonium in real samples with a significant potassium background level (i.e., millimolar concentration). This fact has fostered the search for a large variety of ammonium ionophores over the years, which are critically inspected herein. Overall, we provide an easily readable state of the art accompanied by a comprehensive description of other types of ammonium electrodes, including commercially available units. We conclude that newer breakthroughs are still required in the field to reach the desired analytical applications.

11.
Biosens Bioelectron ; 155: 112093, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32217332

ABSTRACT

Biosensor development exploiting various transduction principles is characterized by a strong competition to reach high detectability, portability and robustness. Nevertheless, a literature-based comparison is not possible, as different conditions are employed in each paper. Herein, we aim at evaluating which measurement, photons or electrons, yields better biosensor performance. Upon outlining an update in recent achievements to boost analytical performance, amperometry and chemiluminescence (CL)-based biosensors are directly compared employing the same biospecific reagents and analytical formats. Horseradish peroxidase (HRP) and hydrogen peroxide concentrations were directly measured, while glucose and mouse IgG were detected employing an enzyme paper-based biosensor and an immunosensor, respectively. Detectability was down to picomoles of hydrogen peroxide (4 pmol for CL and 210 pmol for amperometry) and zeptomoles of HRP (45 zmol for CL and 20 zmol for amperometry); IgG was detected down to 12 fM (CL) and 120 fM (amperometry), while glucose down to 17 µM (CL) and 40 µM (amperometry). Results showed that amperometric and CL biosensors offered similar detectability and analytical performance, with some peculiarities that suggest complementary application fields. As they generally provided slightly higher detectability and wider dynamic ranges, CL-based biosensors appear more suitable for point-of-care testing of clinical biomarkers, where detectability is crucial. Nevertheless, as high detectability in CL biosensors usually requires longer acquisition times, their rapidity will allocate electrochemical biosensors in real-time monitoring and wearable biosensors. The analytical challenge demonstrated that these biosensors have competitive and similar performance, and between photons and electrons the competition is still open.


Subject(s)
Biosensing Techniques/methods , Biosensing Techniques/standards , Electrochemical Techniques/methods , Electrochemical Techniques/standards , Electrochemistry/methods , Electrochemistry/standards , Electrons , Luminescent Measurements/methods , Luminescent Measurements/standards , Photons , Reproducibility of Results , Sensitivity and Specificity
12.
Biosens Bioelectron ; 129: 15-23, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30682684

ABSTRACT

The synthesis and employment of volatile toxic compounds as chemical weapons with a large-scale destructive power has introduced a new insidious threat over the last century. In this framework, the development of wearable sensing tools represents a critical point within the security field, in order to provide early alarm systems. Herein, a novel wearable electrochemical biosensor was developed for the rapid and on-site detection of mustard agents. Since a chemical attack is typically carried out by spraying these volatile agents into air, the sensor was designed in order to be able to measure mustard agents directly in the aerosol phase, further than in the liquid phase. The electrodes were screen-printed onto a filter paper support, which allowed to harness the porosity of paper to pre-load all the needed reagents into the cellulose network, and hence to realise an origami-like and reagent-free device. Mustard agent detection was carried out by monitoring their inhibitory effects toward the choline oxidase enzyme, through the amperometric measurement of the enzymatic by-product hydrogen peroxide. A carbon black/Prussian blue nanocomposite was used as a bulk-modifier of the conductive graphite ink constituting the working electrode, allowing for the electrocatalysis of the hydrogen peroxide reduction. After having verified the detecting capability toward a mustard agent simulant, the applicability of the resulting origami-like biosensor was demonstrated for the rapid and real-time detection of real sulfur mustard, obtaining limits of detection equal to 1 mM and 0.019 g·min/m3 for liquid and aerosol phase, respectively.


Subject(s)
Biosensing Techniques/instrumentation , Chemical Warfare Agents/analysis , Mustard Gas/analysis , Wearable Electronic Devices , Aerosols/analysis , Alcaligenes/enzymology , Alcohol Oxidoreductases/chemistry , Electrochemical Techniques/instrumentation , Enzymes, Immobilized/chemistry , Equipment Design , Humans , Limit of Detection , Paper
13.
Sci Total Environ ; 584-585: 692-700, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28129904

ABSTRACT

Cadmium and lead are highly toxic heavy metals which cause a severe worldwide pollution. In addition to the toxic effect produced by the direct exposure, they can be bioconcentrated and accumulated in living organisms, including humans. Herein, a miniaturized and disposable electrochemical sensor was improved for the simultaneous detection of cadmium and lead ions to study the bioremediation of polluted seawater in presence of the filter-feeding marine organism Styela plicata. A screen-printed electrode modified in situ with a bismuth film was selected using the anodic stripping analysis as detection technique. This sensor was coupled with a portable potentiostat and the detection of cadmium and lead ions was carried out by Square Wave Anodic Stripping Voltammetry, allowing the simultaneous detection of both heavy metals at ppb level (LOD=0.3ppb for lead, 1.5ppb for cadmium). This analytical tool was then applied to assess the bioremediation capacity of S. plicata through a bioremediation experiment, in which the organism has been exposed to seawater artificially polluted with 1000ppb of Cd2+ and Pb2+. The matrix effect of both seawater and acid digested biological samples was evaluated. A bioconcentration phenomenon was observed for both heavy metals through the analysis of S. plicata tissues. In details, Pb2+ resulted to be about 2.5 times more bioconcentrated than Cd2+, giving an effective bioremediation level in seawater of 13% and 40% for Cd2+ and Pb2+, respectively. Thus, our results demonstrate the capability of S. plicata to bioremediate Cd2+ and Pb2+ polluted seawater as well as the suitability of the electrochemical sensor for contaminated marine environment monitoring and bioremediation evaluation.


Subject(s)
Bismuth , Metals, Heavy/isolation & purification , Seawater/chemistry , Urochordata , Water Pollutants, Chemical/isolation & purification , Animals , Biodegradation, Environmental , Cadmium/isolation & purification , Electrodes , Lead/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...