Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Cell Mol Bioeng ; 14(6): 555-567, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34900010

ABSTRACT

INTRODUCTION: Residual pluripotent stem cells (PSC) within differentiated populations are problematic because of their potential to form tumors. Simple methods to reduce their occurrence are needed. METHODS: Here, we demonstrate that control of the oxygen partial pressure (pO2) to physiological levels typical of the developing embryo, enabled by culture on a highly oxygen permeable substrate, reduces the fraction of PSC within and the tumorigenic potential of differentiated populations. RESULTS: Differentiation and/or extended culture at low pO2 reduced measured pluripotency markers by up to four orders of magnitude for mouse PSCs (mPSCs). Combination with cell sorting increased the reduction to as much as six orders of magnitude. Upon implantation into immunocompromised mice, mPSCs differentiated at low pO2 either did not form tumors or formed tumors at a slower rate than at high pO2. CONCLUSIONS: Low pO2 culture alone or in combination with other methods is a potentially straightforward method that could be applied to future cell therapy protocols to minimize the possibility of tumor formation.

2.
Sci Rep ; 8(1): 6508, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695723

ABSTRACT

Transplantation of encapsulated islets can cure diabetes without immunosuppression, but oxygen supply limitations can cause failure. We investigated a retrievable macroencapsulation device wherein islets are encapsulated in a planar alginate slab and supplied with exogenous oxygen from a replenishable gas chamber. Translation to clinically-useful devices entails reduction of device size by increasing islet surface density, which requires increased gas chamber pO2. Here we show that islet surface density can be substantially increased safely by increasing gas chamber pO2 to a supraphysiological level that maintains all islets viable and functional. These levels were determined from measurements of pO2 profiles in islet-alginate slabs. Encapsulated islets implanted with surface density as high as 4,800 islet equivalents/cm3 in diabetic rats maintained normoglycemia for more than 7 months and provided near-normal intravenous glucose tolerance tests. Nearly 90% of the original viable tissue was recovered after device explantation. Damaged islets failed after progressively shorter times. The required values of gas chamber pO2 were predictable from a mathematical model of oxygen consumption and diffusion in the device. These results demonstrate feasibility of developing retrievable macroencapsulated devices small enough for clinical use and provide a firm basis for design of devices for testing in large animals and humans.


Subject(s)
Cell Survival/physiology , Islets of Langerhans Transplantation/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Oxygen/metabolism , Alginates/metabolism , Animals , Blood Glucose/metabolism , Blood Glucose/physiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Glucose Tolerance Test/methods , Graft Survival/physiology , Immunosuppression Therapy/methods , Male , Oxygen Consumption/physiology , Rats , Rats, Inbred Lew
3.
Proc Natl Acad Sci U S A ; 114(44): 11745-11750, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078330

ABSTRACT

Transplantation of pancreatic islets for treating type 1 diabetes is restricted to patients with critical metabolic lability resulting from the need for immunosuppression and the shortage of donor organs. To overcome these barriers, we developed a strategy to macroencapsulate islets from different sources that allow their survival and function without immunosuppression. Here we report successful and safe transplantation of porcine islets with a bioartificial pancreas device in diabetic primates without any immune suppression. This strategy should lead to pioneering clinical trials with xenotransplantation for treatment of diabetes and, thereby, represents a previously unidentified approach to efficient cell replacement for a broad spectrum of endocrine disorders and other organ dysfunctions.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 1/surgery , Diabetes Mellitus, Type 1/therapy , Islets of Langerhans/surgery , Animals , Female , Immunosuppression Therapy/methods , Islets of Langerhans Transplantation/methods , Primates , Swine , Transplantation, Heterologous/methods
4.
PLoS One ; 10(8): e0134428, 2015.
Article in English | MEDLINE | ID: mdl-26258815

ABSTRACT

BACKGROUND: Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. METHODS: Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. RESULTS: Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). CONCLUSIONS: Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.


Subject(s)
Insulin/metabolism , Islets of Langerhans Transplantation/methods , Islets of Langerhans/metabolism , Oxygen Consumption , Adult , Area Under Curve , Body Weight , Cell Membrane/metabolism , DNA/chemistry , Female , Humans , Immunosuppressive Agents/chemistry , Male , Pancreatectomy , Pancreatitis/therapy , ROC Curve , Transplantation, Autologous , Treatment Outcome
5.
Adv Drug Deliv Rev ; 67-68: 93-110, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24582600

ABSTRACT

Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.


Subject(s)
Cell Transplantation/methods , Oxygen/administration & dosage , Animals , Cell Survival , Cell Transplantation/instrumentation , Diffusion , Graft Rejection/prevention & control , Humans , Islets of Langerhans Transplantation , Oxygen/metabolism
6.
Proc Natl Acad Sci U S A ; 110(47): 19054-8, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24167261

ABSTRACT

Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression. A patient with type-1 diabetes received a transplanted chamber and was followed for 10 mo. Persistent graft function in this chamber system was demonstrated, with regulated insulin secretion and preservation of islet morphology and function without any immunosuppressive therapy. This approach may allow for future widespread application of cell-based therapies.


Subject(s)
Bioartificial Organs , Diabetes Mellitus, Type 1/therapy , Diffusion Chambers, Culture , Islets of Langerhans Transplantation/methods , C-Peptide/metabolism , Glucose Tolerance Test , Humans , Immunohistochemistry , Immunosuppression Therapy/methods , Islets of Langerhans Transplantation/immunology , Male , Middle Aged , Treatment Outcome
7.
PLoS One ; 8(8): e70150, 2013.
Article in English | MEDLINE | ID: mdl-23936385

ABSTRACT

Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets. Our study demonstrates the applicability of a novel immunoprotective membrane that allows successful xenotransplantation of rat islets in diabetic minipigs without immunosuppressive therapy. Rat pancreatic islets were encapsulated in highly purified alginate and integrated into a plastic macrochamber covered by a poly-membrane for subcutaneous transplantation. Diabetic Sinclair pigs were transplanted and followed for up to 90 days. We demonstrated a persistent graft function and restoration of normoglycemia without the need for immunosuppressive therapy. This concept could potentially offer an attractive strategy for a more widespread islet replacement therapy that would restore endogenous insulin secretion in diabetic patients without the need for immunosuppressive drugs and may even open up an avenue for safe utilization of xenogeneic islet donors.


Subject(s)
Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/instrumentation , Islets of Langerhans/immunology , Islets of Langerhans/surgery , Membranes, Artificial , Swine, Miniature , Transplantation, Heterologous/instrumentation , Animals , Biomass , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/surgery , Diffusion , Islets of Langerhans/metabolism , Islets of Langerhans/physiopathology , Male , Oxygen/metabolism , Rats , Swine , Time Factors
8.
Cell Transplant ; 22(8): 1463-76, 2013.
Article in English | MEDLINE | ID: mdl-23043896

ABSTRACT

The current epidemic of diabetes with its overwhelming burden on our healthcare system requires better therapeutic strategies. Here we present a promising novel approach for a curative strategy that may be accessible for all insulin-dependent diabetes patients. We designed a subcutaneous implantable bioartificial pancreas (BAP)-the "ß-Air"-that is able to overcome critical challenges in current clinical islet transplantation protocols: adequate oxygen supply to the graft and protection of donor islets against the host immune system. The system consists of islets of Langerhans immobilized in an alginate hydrogel, a gas chamber, a gas permeable membrane, an external membrane, and a mechanical support. The minimally invasive implantable device, refueled with oxygen via subdermally implanted access ports, completely normalized diabetic indicators of glycemic control (blood glucose intravenous glucose tolerance test and HbA1c) in streptozotocin-induced diabetic rats for periods up to 6 months. The functionality of the device was dependent on oxygen supply to the device as the grafts failed when oxygen supply was ceased. In addition, we showed that the device is immuno-protective as it allowed for survival of not only isografts but also of allografts. Histological examination of the explanted devices demonstrated morphologically and functionally intact islets; the surrounding tissue was without signs of inflammation and showed visual evidence of vasculature at the site of implantation. Further increase in islets loading density will justify the translation of the system to clinical trials, opening up the potential for a novel approach in diabetes therapy.


Subject(s)
Islets of Langerhans/drug effects , Oxygen/pharmacology , Pancreas, Artificial , Tissue Survival/drug effects , Allografts/drug effects , Animals , Blood Glucose/metabolism , Fibrosis/pathology , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Implants, Experimental , Insulin/metabolism , Male , Materials Testing , Prosthesis Implantation , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Subcutaneous Tissue/drug effects , Transplantation, Homologous
9.
Proc Natl Acad Sci U S A ; 109(13): 5022-7, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22393012

ABSTRACT

Islet transplantation is a feasible therapeutic alternative for metabolically labile patients with type 1 diabetes. The primary therapeutic target is stable glycemic control and prevention of complications associated with diabetes by reconstitution of endogenous insulin secretion. However, critical shortage of donor organs, gradual loss in graft function over time, and chronic need for immunosuppression limit the indication for islet transplantation to a small group of patients. Here we present a promising approach to address these limitations by utilization of a macrochamber specially engineered for islet transplantation. The s.c. implantable device allows for controlled and adequate oxygen supply and provides immunological protection of donor islets against the host immune system. The minimally invasive implantable chamber normalized blood glucose in streptozotocin-induced diabetic rodents for up to 3 mo. Sufficient graft function depended on oxygen supply. Pretreatment with the growth hormone-releasing hormone (GHRH) agonist, JI-36, significantly enhanced graft function by improving glucose tolerance and increasing ß-cell insulin reserve in rats thereby allowing for a reduction of the islet mass required for metabolic control. As a result of hypervascularization of the tissue surrounding the device, no relevant delay in insulin response to glucose changes has been observed. Consequently, this system opens up a fundamental strategy for therapy of diabetes and may provide a promising avenue for future approaches to xenotransplantation.


Subject(s)
Growth Hormone-Releasing Hormone/agonists , Islets of Langerhans/drug effects , Islets of Langerhans/physiopathology , Oxygen/metabolism , Pancreas, Artificial , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Growth Hormone-Releasing Hormone/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Islets of Langerhans Transplantation , Materials Testing , Quality Control , Rats
10.
Tissue Eng Part C Methods ; 17(4): 435-49, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21067465

ABSTRACT

Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity.


Subject(s)
Alginates/pharmacology , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Tissue Engineering/methods , Animals , Biological Assay , Capsules , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA/metabolism , Diffusion/drug effects , Edetic Acid/pharmacology , Fluorocarbons/pharmacology , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Humans , Materials Testing , Octoxynol/pharmacology , Oxygen Consumption/drug effects , Rats , Rats, Sprague-Dawley , Static Electricity
11.
Lab Invest ; 90(11): 1676-86, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20697375

ABSTRACT

Islet enumeration in impure preparations by conventional dithizone staining and visual counting is inaccurate and operator dependent. We examined nuclei counting for measuring the total number of cells in islet preparations, and we combined it with morphological analysis by light microscopy (LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei suspensions was verified with (1) visual counting in a hemocytometer after staining with crystal violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 and 6.9 pg of DNA per cell for rat and human islets, respectively, in agreement with literature estimates. With pure rat islet preparations, precision improved with increasing counts, and samples with about ≥160 islets provided a coefficient of variation of about 6%. Aliquots of human islet preparations were processed for LM analysis by stereological point counting. Total nuclei counts and islet volume fraction from LM analysis were combined to obtain the number of islet equivalents (IEs). Total number of IE by the standard method of dithizone staining/manual counting was overestimated by about 90% compared with LM/nuclei counting for 12 freshly isolated human islet research preparations. Nuclei counting combined with islet volume fraction measurements from LM is a novel method for achieving accurate islet enumeration.


Subject(s)
Cell Nucleus/ultrastructure , Islets of Langerhans/cytology , Animals , Cell Count , Cell Line, Tumor , DNA/analysis , Humans , Islets of Langerhans/ultrastructure , Mice , Microscopy , Rats
12.
Lab Invest ; 90(11): 1661-75, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20697378

ABSTRACT

Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% ß-cells, 12.6±1.0% non-ß-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were ß-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, ß-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-µm diameter sphere), of which 1140±15 were ß-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R²=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature.


Subject(s)
Islets of Langerhans/cytology , Adult , Aged , Cell Count , Cell Size , Dithizone , Humans , Islets of Langerhans/ultrastructure , Microscopy , Microscopy, Electron , Middle Aged
13.
J Invest Surg ; 23(1): 28-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20233002

ABSTRACT

Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range. The probability of DR increased with increasing transplanted OCR and OCR/DNA. On coordinates of OCR versus OCR/DNA, data fell into regions in which DR occurred in all, some, or none of the animals with a sharp threshold of around 150-nmol/min mg DNA. A model incorporating both parameters predicted transplantation outcome with sensitivity and specificity of 93% and 94%, respectively. Marginal mass was not constant, depended on OCR/DNA, and increased from 2,800 to over 100,000 islet equivalents/kg body weight as OCR/DNA decreased. We conclude that measurements of OCR and OCR/DNA are useful for predicting transplantation outcome in this model system, and OCR/DNA can be used to estimate the marginal mass required for reversing diabetes. Because human clinical islet preparations in a previous study had OCR/DNA.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Islets of Langerhans Transplantation/methods , Animals , Blood Glucose/analysis , Cell Count , DNA/analysis , Diabetes Mellitus, Experimental/blood , Female , Graft Survival , Immunosuppression Therapy , Male , Mice , Mice, Inbred BALB C , Organ Size , Oxygen Consumption , Prognosis , Rats , Rats, Sprague-Dawley , Transplantation, Heterologous
14.
Biotechnol Prog ; 26(3): 805-18, 2010.
Article in English | MEDLINE | ID: mdl-20039374

ABSTRACT

Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Oxygen/metabolism , Silicon/chemistry , Animals , Cell Adhesion , Cell Count , Collagen/metabolism , Drug Combinations , Fibronectins/metabolism , Finite Element Analysis , Kinetics , Laminin/metabolism , Linear Models , Mice , Models, Biological , Myocytes, Cardiac/cytology , Partial Pressure , Polystyrenes , Proteoglycans/metabolism
15.
Curr Opin Organ Transplant ; 14(6): 674-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19812494

ABSTRACT

PURPOSE OF REVIEW: There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation. Development, testing, and validation of such assays have been the subject of intense investigation for the last decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. RECENT FINDINGS: Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate, especially when conducted with intact islets, appear most promising in evaluating their quality prior to islet cell transplantation. Prospective, quantitative assays based on measurements of oxygen consumption rate with intact islets have been developed, validated, and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. CONCLUSION: More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting.


Subject(s)
Biological Assay , Diabetes Mellitus, Type 1/surgery , Islets of Langerhans Transplantation , Islets of Langerhans/pathology , Tissue and Organ Harvesting , Animals , Biological Assay/standards , Cell Survival , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Disease Models, Animal , Humans , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/standards , Membrane Potential, Mitochondrial , Mice , Mitochondria/metabolism , Oxygen Consumption , Quality Control , Reproducibility of Results , Tissue and Organ Harvesting/standards , Treatment Outcome
16.
Regen Med ; 4(5): 721-32, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19761397

ABSTRACT

Embryonic stem cells and induced pluripotent stem cells have the potential to be a renewable source of cardiomyocytes for use in myocardial cell replacement strategies. Although progress has been made towards differentiating stem cells to specific cell lineages, the efficiency is often poor and the number of cells generated is not suitable for therapeutic usage. Recent studies demonstrated that controlling the stem cell microenvironment can influence differentiation. Components of the extracellular matrix are important physiological regulators and can provide mechanical cues, direct differentiation and improve cell engraftment into damaged tissue. Bioreactors are used to control the microenvironment and produce large numbers of desired cells. This article describes recent methods to achieve cardiomyocyte differentiation by engineering the stem cell microenvironment. Successful translation of stem cell research to therapeutic applications will need to address large-scale cardiomyocyte differentiation and purification, assessment of cardiac function and synchronization, and safety concerns.


Subject(s)
Biomedical Engineering , Cell Differentiation , Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Animals , Bioreactors , Cell Communication , Cell Culture Techniques , Cell Hypoxia , Extracellular Matrix/physiology , Extracellular Matrix/ultrastructure , Humans , Mice
17.
Curr Opin Organ Transplant ; 14(6): 694-700, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19779343

ABSTRACT

PURPOSE OF REVIEW: To summarize recent reports on the effects of low oxygen on the undifferentiated phenotype and differentiation of embryonic stem cells (ESCs). RECENT FINDINGS: The oxygen level to which ESCs are exposed is an important environmental parameter. Under conditions maintaining the undifferentiated phenotype, low oxygen reduces spontaneous differentiation of human ESCs but reduces pluripotency gene expression in mouse ESCs, although reports are conflicting. Differentiation under low oxygen increases generation of neurons, cardiomyocytes, hematopoietic progenitors, endothelial cells, and chondrocytes. Many of the effects of low oxygen have been attributed to action by hypoxia inducible factor-1alpha (HIF-1alpha). The oxygen level in the gas phase (pO2gas) is often different than that experienced by the cells (pO2cell) and is unrecognized by investigators, which makes interpretation of the literature difficult. This difference increases with high cell densities, high cellular oxygen consumption rates, and large medium heights. The problem can be addressed by use of oxygen-permeable culture dishes and by estimation of pO2cell with mathematical models. SUMMARY: Low oxygen influences aspects of ESC pluripotency and differentiation. A better understanding of its effects and mechanism along with better estimation and control of pO2cell is important for applying low oxygen culture to regenerative medicine applications.


Subject(s)
Cell Differentiation , Cell Proliferation , Embryonic Stem Cells/metabolism , Oxygen/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Culture Techniques , Cell Hypoxia , Embryonic Stem Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Models, Biological , Phenotype , Pluripotent Stem Cells/pathology
18.
Biotechnol Bioeng ; 101(2): 241-54, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18727033

ABSTRACT

Most embryonic stem (ES) cell research is performed with a gas phase oxygen partial pressure (pO(2)) of 142 mmHg, whereas embryonic cells in early development are exposed to pO(2) values of 0-30 mmHg. To understand effects of these differences, we studied murine ES (mES) growth, maintenance of stem cell phenotype, and cell energetics over a pO(2) range of 0-285 mmHg, in the presence or absence of differentiation-suppressing leukemia inhibitory factor (LIF). With LIF, growth rate was sensitive to pO(2) but constant with time, and expression of self-renewal transcription factors decreased at extremes of pO(2). Subtle morphological changes suggested some early differentiation, but cells retained the ability to differentiate into derivatives of all three germ layers at low pO(2). Without LIF, growth rate decreased with time, and self-renewal transcription factor mRNA decreased further. Gross morphological changes occurred, and overt differentiation occurred at all pO(2). These findings suggested that hypoxia in the presence of LIF promoted limited early differentiation. ES cells survived oxygen starvation with negligible cell death by increasing anaerobic metabolism within 48 h of anoxic exposure. Decreasing pO(2) to 36 mmHg or lower decreased oxygen consumption rate and increased lactate production rate. The fraction of ATP generated aerobically was 60% at or above 142 mmHg and decreased to 0% under anoxia, but the total ATP production rate remained nearly constant at all pO(2). In conclusion, undifferentiated ES cells adapt their energy metabolism to proliferate at all pO(2) between 0 and 285 mmHg. Oxygen has minimal effects on undifferentiated cell growth and phenotype, but may exert more substantial effects under differentiating conditions.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Leukemia Inhibitory Factor/metabolism , Oxygen Consumption , Animals , Cell Differentiation , Cell Hypoxia , Cell Line , Cell Proliferation , DNA Damage , Embryo, Mammalian , L-Lactate Dehydrogenase/metabolism , Lactic Acid/biosynthesis , Mice , Oxidative Stress , Phenotype , Transcription Factors/metabolism
19.
Biotechnol Bioeng ; 98(5): 1071-82, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17497731

ABSTRACT

Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 microL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO(2)) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO(2) with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with betaTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions.


Subject(s)
Islets of Langerhans/metabolism , Lab-On-A-Chip Devices , Oxygen Consumption , Algorithms , Animals , Cell Line, Tumor , Cell Survival , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans Transplantation/methods , Male , Mice , Microchip Analytical Procedures/methods , Oxygen/analysis , Oxygen/metabolism , Partial Pressure , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Swine
20.
Transplantation ; 79(1): 52-8, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15714169

ABSTRACT

BACKGROUND: To follow up on previously successful transplantation of encapsulated islets in mice, the present study was performed in rats to determine the effects of several factors, including alginate composition and concentration of cross-linking agent and capsule size on the effectiveness of encapsulated islets. METHODS: Highly purified alginate of either high guluronic acid or high mannuronic acid (M) with low endotoxin content was used. Regular-size (0.8-1.1 mm) or small microcapsules (0.5-0.7 mm) were produced by cross-linking with BaCl2 without additional poly-L-lysine coating and were transplanted into abdominal cavity of normoglycemic (empty capsules) or streptozotocin induced diabetic Lewis rats (islet containing capsules). RESULTS: Empty regular-size capsules made of different alginate compositions had similar biocompatibility and stability results. Compared with empty capsules, regular-size capsules made of high-M alginate containing syngeneic islets had inferior stability indicated with lower fractional volume retrieved. Islet-containing smaller-size microcapsules made of high-M alginate were more stable and had less cellular attachment compared with the regular-size capsules, although the normoglycemic period was comparable between two groups of rats receiving transplants with smaller-size microcapsules (48+/-8 days, n=8) or regular-size capsules (59+/-11 days, n=4) in allogeneic experiments. In syngeneic experiments, all of the rats (n=4) maintained normoglycemia up to 210 days after transplantation. CONCLUSION: These results indicate that regular-size alginate capsules do less well in rats than in our previous experiments with mice. Smaller capsules made of alginate cross-linked with barium appear to provide better stability and may be a useful strategy for use in larger recipients.


Subject(s)
Blood Glucose/analysis , Islets of Langerhans Transplantation/methods , Animals , Barium Compounds/pharmacology , C-Peptide/analysis , Chlorides/pharmacology , Glucose Tolerance Test , Graft Survival , Male , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...