Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923713

ABSTRACT

Microencapsulation procedures have recently focused attention on designing novel microspheres via green synthesis strategies. The use of chitosan (CS) as an encapsulating material has increased interest due to its unique bioactive properties and the various crosslinking possibilities offered by their functional groups. The consolidation of the microspheres by physical crosslinking using sodium tripolyphosphate (TPP) combined with chemical crosslinking using vanillin (VA) open new opportunities in the framework of green dual crosslinking strategies. The developed strategy, a straightforward technique based on an aqueous medium avoiding complex separation/washing steps, offers advantages over the processes based on VA, mostly using water-in-oil emulsion approaches. Thus, in this work, the combination of TPP crosslinking (3, 5, and 10 wt.%) via spray-coagulation technique with two VA crosslinking methods (in situ and post-treatment using 1 wt.% VA) were employed in the preparation of microspheres. The microspheres were characterized concerning morphology, particle size, physicochemical properties, thermal stability, and swelling behavior. Results revealed that the combination of 5 wt.% TPP with in situ VA crosslinking led to microspheres with promising properties, being an attractive alternative for natural bioactives encapsulation due to the green connotations associated with the process.


Subject(s)
Benzaldehydes/chemistry , Chitosan/chemistry , Polyphosphates/chemistry , Emulsions , Microspheres
2.
Molecules ; 25(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365923

ABSTRACT

Water-in-oil (W/O) emulsions have high potential for several industrial areas as delivery systems of hydrophilic compounds. In general, they are less studied than oil-in-water (O/W) systems, namely in what concerns the so-called fluid systems, partly due to problems of instability. In this context, this work aimed to produce stable W/O emulsions from a natural oil, sweet almond oil, to be further tested as vehicles of natural hydrophilic extracts, here exemplified with an aqueous cinnamon extract. Firstly, a base W/O emulsion using a high-water content (40/60, v/v) was developed by testing different mixtures of emulsifiers, namely Tween 80 combined with Span 80 or Span 85 at different contents. Among the tested systems, the one using a 54/46 (v/v) Span 80/Tween 80 mixture, and subjected to 12 high-pressure homogenizer (HPH) cycles, revealed to be stable up to 6 months, being chosen for the subsequent functionalization tests with cinnamon extract (1.25-5%; w/v; water-basis). The presence of cinnamon extract leaded to changes in the microstructure as well as in the stability. The antimicrobial and antioxidant analysis were evidenced, and a sustained behavior compatible with an extract distribution within the two phases, oil and water, in particular for the higher extract concentration, was observed.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Carriers/chemistry , Emulsions/chemistry , Oils/chemistry , Water/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Cinnamomum zeylanicum/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...