ABSTRACT
The ErbB2 receptor tyrosine kinase plays a key role in mammary gland development. It forms large clusters which serve as signaling platforms for integration of extracellular information. The discoidin domain receptor (DDR) family are collagen receptor tyrosine kinases which, together with ErbB2, are involved in many physiological and pathological processes. Here, we investigated the interaction of ErbB2 and DDR1 receptors in breast cancer cells. In contrast to beta1-integrin, DDR1 colocalizes with ErbB2 in membrane clusters regardless of their expression levels. We demonstrated that this spatial coexistence is a consequence of the physical interaction between these receptors. In addition, these receptors are coexpressed in the normal mammary gland but not in breast tumor samples. Together, these results present DDR1 as a novel modulator of the ErbB2/ErbB3 signaling pathway.
Subject(s)
Discoidin Domain Receptor 1 , Receptor Protein-Tyrosine Kinases , Discoidin Domain Receptor 1/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Discoidin Domain Receptors/metabolism , Epithelial Cells/metabolismABSTRACT
In recent years, the field of immunology has been revolutionized by the growing understanding of the fundamental role of microbiota in the immune system function. The immune system has evolved to maintain a symbiotic relationship with these microbes. The aim of our study was to know in depth the uncharacterized metagenome of the Buenos Aires (BA) city population and its metropolitan area, being the second most populated agglomeration in the southern hemisphere. For this purpose, we evaluated 30 individuals (age: 35.23 ± 8.26 years and BMI: 23.91 ± 3.4 kg/m2), from the general population of BA. The hypervariable regions V3-V4 of the bacterial 16S gene was sequenced by MiSeq-Illumina system, obtaining 47526 ± 4718 sequences/sample. The dominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacteria. Additionally, we compared the microbiota of BA with other westernized populations (Santiago de Chile, Rosario-Argentina, United States-Human-microbiome-project, Bologna-Italy) and the Hadza population of hunter-gatherers. The unweighted UniFrac clustered together all westernized populations, leaving the hunter-gatherer population from Hadza out. In particular, Santiago de Chile's population turns out to be the closest to BA's, principally due to the presence of Verrucomicrobiales of the genus Akkermansia. These microorganisms have been proposed as a hallmark of a healthy gut. Finally, westernized populations showed more abundant metabolism related KEEG pathways than hunter-gatherers, including carbohydrate metabolism (amino sugar and nucleotide sugar metabolism), amino acid metabolism (alanine, aspartate and glutamate metabolism), lipid metabolism, biosynthesis of secondary metabolites, and sulfur metabolism. These findings contribute to promote research and comparison of the microbiome in different human populations, in order to develop more efficient therapeutic strategies for the restoration of a healthy dialogue between host and environment.
ABSTRACT
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with ß1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with ß1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.
Subject(s)
Estrogen Receptor alpha/metabolism , Fibronectins/physiology , Lysosomes/metabolism , Cell Line, Tumor , Endosomes/metabolism , Extracellular Matrix/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Integrin beta1/metabolism , MCF-7 Cells , Models, Biological , Protein Transport , Proteolysis , Tumor MicroenvironmentABSTRACT
α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production.
Subject(s)
Electron Transport Complex I/metabolism , Mitochondria/metabolism , alpha-Synuclein/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Male , Membrane Potential, Mitochondrial , Parkinson Disease/metabolism , Protein Transport , Rats, Wistar , Reactive Oxygen Species/metabolismABSTRACT
A novel fluorescent molecular probe is reported, which is able to detect glycoproteins, especially mucins, with high sensitivity and with a turn-on response along with a large Stokes shift (>130â nm), within the biologically active window. The probe contains an aminotricarbocyanine as the fluorescent reporter with a linked benzoboroxole as the recognition unit, which operates through a dynamic covalent reaction between the boronic hemiester residue of the receptor and cis-diols of the analyte. The superior selectivity of the probe is displayed by the labeling of mucins present in Calu-3 cells. The new benzoboroxole fluorescent derivative gathers together key properties to make it a highly rated molecular probe: specificity, excellent solubility in water, and off-on near infrared emission. This probe is expected to be an excellent tool for imaging intracellular mucin to evaluate mucus-related diseases as well as a sensing strategy towards glycosylated structures with a high potential for theranostics approaches in biological samples.
Subject(s)
Fluorescent Dyes/chemistry , Glycoproteins/analysis , Mucins/analysis , Spectroscopy, Near-Infrared/methods , Boron Compounds/chemistry , Epithelial Cells/drug effects , Humans , Molecular StructureABSTRACT
Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30-50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus' probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies.
ABSTRACT
ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.
Subject(s)
Breast Neoplasms/pathology , CD18 Antigens/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , HumansABSTRACT
We report the synthesis of a near-infrared (NIR) fluorescent pH probe with a remarkable Stokes shift (â¼135 nm) based on a tricarbocyanine (Cy-PIP). The fluorescent molecule was anchored to SiO2 nanoparticles (Cy-PIP@SiO2) and is capable of monitoring pH changes within the physiological range (pH 6-8). The Cy-PIP@SiO2 nanoparticles were successfully internalized by HeLa cells as shown by fluorescence confocal microscopy, while flow cytometry revealed pH fluctuations during the endocytic pathway.
ABSTRACT
This work describes a novel mono-boronic acid derivative of a tricarbocyanine. The probe is a genuine near-infrared fluorescence emitter with improved properties such as a large Stokes shift, excellent water solubility and sensitive fluorogenicity upon binding to carbohydrates under physiological conditions.
Subject(s)
Boron Compounds/chemistry , Carbohydrates/chemistry , Monosaccharides/chemistry , Animals , Cell Line , Fluorescence , Fluorescent Dyes/chemistry , Molecular Structure , Sensitivity and SpecificityABSTRACT
BACKGROUND: Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. RESULTS: We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. CONCLUSIONS: IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation.