Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cancers (Basel) ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473425

ABSTRACT

Brain cancer is a devastating and life-changing disease. Biomarkers are becoming increasingly important in addressing clinical issues, including in monitoring tumour progression and assessing survival and treatment response. The goal of this study was to identify prognostic biomarkers associated with glioma progression. Discovery proteomic analysis was performed on a small cohort of astrocytomas that were diagnosed as low-grade and recurred at a higher grade. Six proteins were chosen to be validated further in a larger cohort. Three proteins, CA9, CYFIP2, and LGALS3BP, were found to be associated with glioma progression and, in univariate analysis, could be used as prognostic markers. However, according to the results of multivariate analysis, these did not remain significant. These three proteins were then combined into a three-protein panel. This panel had a specificity and sensitivity of 0.7459 for distinguishing between long and short survival. In silico data confirmed the prognostic significance of this panel.

2.
Cancers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35954477

ABSTRACT

Mesothelioma is an aggressive cancer with limited treatment options and a poor prognosis. Phytocannabinoids possess anti-tumour and palliative properties in multiple cancers, however their effects in mesothelioma are unknown. We investigated the anti-cancer effects and potential mechanisms of action for several phytocannabinoids in mesothelioma cell lines. A panel of 13 phytocannabinoids inhibited growth of human (MSTO and H2452) and rat (II-45) mesothelioma cells in vitro, and cannabidiol (CBD) and cannabigerol (CBG) were the most potent compounds. Treatment with CBD or CBG resulted in G0/G1 arrest, delayed entry into S phase and induced apoptosis. CBD and CBG also significantly reduced mesothelioma cell migration and invasion. These effects were supported by changes in the expression of genes associated with the cell cycle, proliferation, and cell movement following CBD or CBG treatment. Gene expression levels of CNR1, GPR55, and 5HT1A also increased with CBD or CBG treatment. However, treatment with CBD or CBG in a syngeneic orthotopic rat mesothelioma model was unable to increase survival. Our data show that cannabinoids have anti-cancer effects on mesothelioma cells in vitro and alternatives of drug delivery may be needed to enhance their effects in vivo.

3.
Cancers (Basel) ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35892879

ABSTRACT

The genomic heterogeneity of pancreatic ductal adenocarcinoma (PDAC) is becoming increasingly appreciated. We aimed to evaluate the ability of a triple biomarker panel (S100A4, Ca-125, and mesothelin) to predict: (i) genetic PDAC subtypes; (ii) clinical phenotypes; and (iii) the optimal treatment strategy (neoadjuvant vs. surgery-first) in resectable and borderline resectable PDAC. Patients who underwent resection for resectable and borderline resectable PDAC were included from one single-institutional cohort and one multi-institutional cohort from the Australian Pancreatic Genome Initiative (APGI). Tumors were immunohistochemically evaluated for S100A4, Ca-125, and mesothelin, and a subset from the APGI cohort underwent RNA sequencing. This study included 252 and 226 patients from the single institution and the APGI cohorts, respectively. Triple-negative biomarker status correlated with non-squamous PDAC genotypes (p = 0.020), lower rates of distant recurrence (p = 0.002), and longer median overall survival (mOS) with the surgery-first approach compared with neoadjuvant treatment (33.3 vs. 22.2 mths, p = 0.038) in resectable PDAC. In contrast, the triple-positive disease was associated with longer mOS with neoadjuvant treatment compared with the surgery-first approach (29.5 vs. 13.7 mths, p = 0.021) in resectable and borderline resectable PDAC. In conclusion, the triple biomarker panel predicts genetic PDAC subtypes, clinical phenotypes, and optimal treatment strategies in resectable and borderline resectable PDAC.

4.
Ann Surg ; 272(2): 366-376, 2020 08.
Article in English | MEDLINE | ID: mdl-32675551

ABSTRACT

OBJECTIVE: We aimed to define preoperative clinical and molecular characteristics that would allow better patient selection for operative resection. BACKGROUND: Although we use molecular selection methods for systemic targeted therapies, these principles are not applied to surgical oncology. Improving patient selection is of vital importance for the operative treatment of pancreatic cancer (pancreatic ductal adenocarcinoma). Although surgery is the only chance of long-term survival, 80% still succumb to the disease and approximately 30% die within 1 year, often sooner than those that have unresected local disease. METHOD: In 3 independent pancreatic ductal adenocarcinoma cohorts (total participants = 1184) the relationship between aberrant expression of prometastatic proteins S100A2 and S100A4 and survival was assessed. A preoperative nomogram based on clinical variables available before surgery and expression of these proteins was constructed and compared to traditional measures, and a postoperative nomogram. RESULTS: High expression of either S100A2 or S100A4 was independent poor prognostic factors in a training cohort of 518 participants. These results were validated in 2 independent patient cohorts (Glasgow, n = 198; Germany, n = 468). Aberrant biomarker expression stratified the cohorts into 3 distinct prognostic groups. A preoperative nomogram incorporating S100A2 and S100A4 expression predicted survival and nomograms derived using postoperative clinicopathological variables. CONCLUSIONS: Of those patients with a poor preoperative nomogram score, approximately 50% of patients died within a year of resection. Nomograms have the potential to improve selection for surgery and neoadjuvant therapy, avoiding surgery in aggressive disease, and justifying more extensive resections in biologically favorable disease.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Chemotactic Factors/genetics , Pancreatectomy/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , S100 Proteins/genetics , Aged , Carcinoma, Pancreatic Ductal/surgery , Cause of Death , Cohort Studies , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Nomograms , Pancreatectomy/mortality , Pancreatic Neoplasms/surgery , Patient Selection , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Assessment , Survival Analysis
5.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645943

ABSTRACT

High-grade serous epithelial ovarian cancer (HGSC) is the most aggressive subtype of epithelial ovarian cancer. The identification of germline and somatic mutations along with genomic information unveiled by The Cancer Genome Atlas (TCGA) and other studies has laid the foundation for establishing preclinical models with high fidelity to the molecular features of HGSC. Notwithstanding such progress, the field of HGSC research still lacks a model that is both robust and widely accessible. In this review, we discuss the recent advancements and utility of HGSC genetically engineered mouse models (GEMMs) to date. Further analysis and critique on alternative approaches to modelling HGSC considers technological advancements in somatic gene editing and modelling prototypic organs, capable of tumorigenesis, on a chip.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/genetics , Animals , Animals, Genetically Modified/genetics , Carcinogenesis/genetics , Disease Models, Animal , Female , Gene Editing/methods , Humans , Mice
7.
Cancer Sci ; 111(5): 1805-1817, 2020 May.
Article in English | MEDLINE | ID: mdl-32058624

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment and are responsible for producing the desmoplastic reaction that is a poor prognostic factor in ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to play important roles in cancer. However, very little is known about the role of lncRNAs in the tumor microenvironment. We aimed to identify lncRNAs expressed in ovarian CAFs that were associated with patient survival and used computational approaches to predict their function. Increased expression of 9 lncRNAs and decreased expression of 1 lncRNA in ovarian CAFs were found to be associated with poorer overall survival. A "guilt-by-association" approach was used to predict the function of these lncRNAs. In particular, MIR155HG was predicted to play a role in immune response. Further investigation revealed high MIR155HG expression to be associated with higher infiltrates of immune cell subsets. In conclusion, these data indicate expression on several lncRNAs in CAFs are associated with patient survival and are likely to play an important role in regulating CAF function.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , RNA, Long Noncoding/genetics , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Middle Aged , Ovarian Neoplasms/pathology , Prognosis , RNA, Long Noncoding/metabolism , Survival Analysis , Tumor Microenvironment
8.
Int J Mol Sci ; 19(1)2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29320407

ABSTRACT

Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs) with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Humans , Injections, Intraperitoneal , Liver/chemistry , Liver/drug effects , Liver/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Omentum/chemistry , Omentum/drug effects , Omentum/metabolism , Particle Size , RAW 264.7 Cells , Spleen/chemistry , Spleen/drug effects , Spleen/metabolism , Tissue Distribution , Transplantation, Heterologous
9.
Sci Rep ; 7(1): 10374, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871211

ABSTRACT

Cancer-associated fibroblasts (CAFs) contribute to the poor prognosis of ovarian cancer. Unlike in tumour cells, DNA mutations are rare in CAFs, raising the likelihood of other mechanisms that regulate gene expression such as long non-coding RNAs (lncRNAs). We aimed to identify lncRNAs that contribute to the tumour-promoting phenotype of CAFs. RNA expression from 67 ovarian CAF samples and 10 normal ovarian fibroblast (NOF) samples were analysed to identify differentially expressed lncRNAs and a functional network was constructed to predict those CAF-specific lncRNAs involved in metastasis. Of the 1,970 lncRNAs available for analysis on the gene expression array used, 39 unique lncRNAs were identified as differentially expressed in CAFs versus NOFs. The predictive power of differentially expressed lncRNAs in distinguishing CAFs from NOFs were assessed using multiple multivariate models. Interrogation of known transcription factor-lncRNA interactions, transcription factor-gene interactions and construction of a context-specific interaction network identified multiple lncRNAs predicted to play a role in metastasis. We have identified novel lncRNAs in ovarian cancer that are differentially expressed in CAFs compared to NOFs and are predicted to contribute to the metastasis-promoting phenotype of CAFs.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA, Long Noncoding/genetics , Aged , Cancer-Associated Fibroblasts/pathology , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Ovarian Neoplasms/metabolism , Transcriptome
10.
ILAR J ; 57(1): 44-54, 2016.
Article in English | MEDLINE | ID: mdl-27034394

ABSTRACT

The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.


Subject(s)
Mice, Transgenic , Neoplasms/virology , Animals , Mice , Simian virus 40/physiology
11.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26909576

ABSTRACT

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Histone Demethylases/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Humans , Mice , Nuclear Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Survival Analysis , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Zebrafish Proteins
12.
Front Oncol ; 5: 245, 2015.
Article in English | MEDLINE | ID: mdl-26579497

ABSTRACT

Epithelial ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecological malignancy. Extracellular matrix (ECM) is an integral component of both the normal and tumor microenvironment. ECM composition varies between tissues and is crucial for maintaining normal function and homeostasis. Dysregulation and aberrant deposition or loss of ECM components is implicated in ovarian cancer progression. The mechanisms by which tumor cells induce ECM remodeling to promote a malignant phenotype are yet to be elucidated. A thorough understanding of the role of the ECM in ovarian cancer is needed for the development of effective biomarkers and new therapies.

13.
Oncotarget ; 6(42): 44551-62, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26575166

ABSTRACT

Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Connective Tissue Growth Factor/antagonists & inhibitors , Neoplasms, Cystic, Mucinous, and Serous/drug therapy , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/prevention & control , Stromal Cells/drug effects , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Databases, Genetic , Female , Gene Expression Profiling , Humans , Middle Aged , Molecular Targeted Therapy , Neoplasm Grading , Neoplasm Invasiveness , Neoplasms, Cystic, Mucinous, and Serous/genetics , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Neoplasms, Cystic, Mucinous, and Serous/secondary , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Signal Transduction/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Up-Regulation
14.
Horm Cancer ; 6(4): 142-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25943777

ABSTRACT

BRCA1 mutations are associated with ovarian cancer. Previous studies reported that murine granulosa cell (GC) Brca1 loss caused ovarian-uterine tumors resembling serous cystadenomas, but the pathogenesis of these tumors may have been confounded by ectopic Brca1 expression and altered estrous cycling. We have used Tg.AMH.Cre conferring proven ovarian and GC-specific Cre activity to selectively target Brca1 disruption, denoted Brca1(GC-/-). Furthermore, ovary-specific Brca1(GC-/-) was combined with global Trp53 haploinsufficiency (Trp53(+/-)) and transgenic follicle-stimulating hormone (Tg.FSH) overexpression as a multi-hit strategy to investigate additional genetic and hormonal ovarian tumorigenesis mechanisms. However, 12-month-old Brca1(GC-/-) mice had no detectable ovarian or uterine tumors. Brca1(GC-/-) mice had significantly increased ovary weights, follicles exhibiting more pyknotic granulosa cells, and fewer corpora lutea with regular estrous cycling compared to controls. Isolated Brca1(GC-/-) mutation lengthened the estrous cycle and proestrus stage; however, ovarian cystadenomas were not observed, even when Brca1(GC-/-) was combined with Trp53(+/-) and overexpressed Tg.FSH. Our Brca1(GC-/-) models reveal that specific intra-follicular Brca1 loss alone, or combined with cancer-promoting genetic (Trp53 loss) and endocrine (high serum FSH) changes, was not sufficient to cause ovarian tumors. Our findings show that the ovary is remarkably resistant to oncogenesis, and support the emerging view of an extragonadal, multi-hit origin for ovarian tumorigenesis.


Subject(s)
BRCA1 Protein/genetics , Follicle Stimulating Hormone/genetics , Haploinsufficiency , Ovarian Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Animals , Cystadenoma/genetics , Cystadenoma/pathology , Estradiol/metabolism , Female , Follicle Stimulating Hormone/metabolism , Granulosa Cells/metabolism , Mice , Mice, Transgenic , Ovarian Neoplasms/genetics , Ovary/pathology , Uterus/pathology
15.
Int J Oncol ; 46(5): 2223-30, 2015 May.
Article in English | MEDLINE | ID: mdl-25695794

ABSTRACT

Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5­year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5­AZA­2' deoxycytidine (5­AZA­dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5­AZA­dc, resulted in higher cell death and lower DNA synthesis compared to 5­AZA­dc alone and controls (DMSO). Further, combination treatment with SAHA and 5­AZA­dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Azacitidine/analogs & derivatives , Cell Proliferation/drug effects , Hydroxamic Acids/pharmacology , Pancreatic Neoplasms/pathology , Animals , Azacitidine/pharmacology , Blotting, Western , Cell Death/drug effects , Cell Line, Tumor , Decitabine , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Vorinostat
16.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25719666

ABSTRACT

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , DNA Repair/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Markers/genetics , Genomic Instability/genetics , Genotype , Humans , Mice , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/drug therapy , Platinum/pharmacology , Point Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays
17.
Methods Mol Biol ; 1194: 367-83, 2014.
Article in English | MEDLINE | ID: mdl-25064115

ABSTRACT

The ability to accurately model human cancer in mice enables in vivo examination of the biological mechanisms related to cancer initiation and progression as well as preclinical testing of new anticancer treatments and potential targets. The emergence of the genetically engineered Sleeping Beauty system of insertional mutagenesis has led to the development of a new generation of genetic mouse models of cancer and identification of novel cancer-causing genes. This chapter reviews the published cancer models of Sleeping Beauty and strategies using available strains to generate several models of cancer.


Subject(s)
DNA Transposable Elements/genetics , Mutagenesis, Insertional/methods , Neoplasms/genetics , Adenoviridae/genetics , Animals , Breeding , Disease Models, Animal , Humans , Integrases/metabolism , Male , Mice , Neoplasms/pathology , Transgenes/genetics
18.
Front Oncol ; 4: 137, 2014.
Article in English | MEDLINE | ID: mdl-24936477

ABSTRACT

Ovarian cancer is the leading cause of death in women with gynecological malignancy and improvements in current treatments are needed. As with many other solid cancers, the ovarian tumor microenvironment is emerging as a key player in tumor progression and a potential therapeutic target. The tumor microenvironment contains several non-malignant cell types that are known to contribute to tumor progression and metastasis. Included in this population of non-malignant cells are several different types of immune cells, of which tumor-associated macrophages (TAMs) are the most abundant. An increasing amount of evidence is emerging to suggest that TAMs display a unique activation profile in ovarian tumors and are able to create an immunosuppressive microenvironment, allowing tumors to evade immune detection and promoting tumor progression. Therefore, an increased understanding of how these immune cells interact with tumor cells and the microenvironment will greatly benefit the development of more effective immunotherapies to treat ovarian cancer. This review focuses on the role of TAMs in the ovarian tumor microenvironment and how they promote tumor progression.

19.
Semin Cell Dev Biol ; 27: 96-105, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24685616

ABSTRACT

Pancreatic cancer is an inherently aggressive disease with an extremely poor prognosis and lack of effective treatments. Over the past few decades, much has been uncovered regarding the pathogenesis of pancreatic cancer and the underlying genetic alterations necessary for tumour initiation and progression. Much of what we know about pancreatic cancer has come from mouse models of this disease. This review focusses on the development of genetically engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer, as well as the increasing use of patient-derived xenografts for preclinical studies and the development of personalised medicine strategies.


Subject(s)
Pancreatic Neoplasms/history , Animals , Carcinogenesis/genetics , Genes, Neoplasm , History, 20th Century , History, 21st Century , Humans , Mice, Transgenic , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/history , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Xenograft Model Antitumor Assays
20.
Semin Cell Dev Biol ; 27: 61-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24583142

ABSTRACT

The discovery of a number of viruses with the ability to induce tumours in animals and transform human cells has vastly impacted cancer research. Much of what is known about tumorigenesis today regarding tumour drivers and tumour suppressors has been discovered through experiments using viruses. The SV40 virus has proven extremely successful in generating transgenic models of many human cancer types and this review provides an overview of these models and seeks to give evidence as to their relevance in this modern era of personalised medicine and technological advancements.


Subject(s)
Antigens, Polyomavirus Transforming/genetics , Neoplasms, Experimental/virology , Animals , Humans , Mice, Transgenic , Simian virus 40/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...