Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 126(40): 7847-7856, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36194539

ABSTRACT

The sensitivity enhancements available from dynamic nuclear polarization (DNP) are rapidly reshaping the research landscape and expanding the field of nuclear magnetic resonance (NMR) spectroscopy as a tool for solving complex chemical and structural problems. The past decade has seen considerable advances in this burgeoning method, while efforts to further improve its capabilities continue along many avenues. In this report, we examine the influence of static magnetic field strength and temperature on the reported 1H DNP enhancements from three conventional organic biradicals: TOTAPOL, AMUPol, and SPIROPOL. In contrast to the conventional wisdom, our findings show that at liquid nitrogen temperatures and 700 MHz/460.5 GHz, these three bisnitroxides all provide similar 1H DNP enhancements, ε ≈ 60. Furthermore, we investigate the influence of temperature, microwave power, magnetic field strength, and protein sample deuteration on the NMR experimental results.


Subject(s)
Microwaves , Nitrogen , Magnetic Resonance Spectroscopy/methods , Temperature
2.
J Am Chem Soc ; 139(49): 17953-17963, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29111706

ABSTRACT

The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.


Subject(s)
Dipeptides/chemistry , Leucine/analogs & derivatives , Magnetic Fields , Nuclear Magnetic Resonance, Biomolecular/methods , Oxygen Isotopes , Valine/analogs & derivatives , Valine/chemistry , Hydrogen Bonding , Leucine/chemistry
3.
Biochemistry ; 56(36): 4850-4859, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28792214

ABSTRACT

A mechanistic understanding of Aß aggregation and high-resolution structures of Aß fibrils and oligomers are vital to elucidating relevant details of neurodegeneration in Alzheimer's disease, which will facilitate the rational design of diagnostic and therapeutic protocols. The most detailed and reproducible insights into structure and kinetics have been achieved using Aß peptides produced by recombinant expression, which results in an additional methionine at the N-terminus. While the length of the C-terminus is well established to have a profound impact on the peptide's aggregation propensity, structure, and neurotoxicity, the impact of the N-terminal methionine on the aggregation pathways and structure is unclear. For this reason, we have developed a protocol to produce recombinant Aß1-42, sans the N-terminal methionine, using an N-terminal small ubiquitin-like modifier-Aß1-42 fusion protein in reasonable yield, with which we compared aggregation kinetics with AßM01-42 containing the additional methionine residue. The data revealed that Aß1-42 and AßM01-42 aggregate with similar rates and by the same mechanism, in which the generation of new aggregates is dominated by secondary nucleation of monomers on the surface of fibrils. We also recorded magic angle spinning nuclear magnetic resonance spectra that demonstrated that excellent spectral resolution is maintained with both AßM01-42 and Aß1-42 and that the chemical shifts are virtually identical in dipolar recoupling experiments that provide information about rigid residues. Collectively, these results indicate that the structure of the fibril core is unaffected by N-terminal methionine. This is consistent with the recent structures of AßM01-42 in which M0 is located at the terminus of a disordered 14-amino acid N-terminal tail.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Spectrum Analysis/methods
4.
J Am Chem Soc ; 138(30): 9663-74, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27355699

ABSTRACT

Amyloid-ß (Aß) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-ß amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aß are Aß1-40 and Aß1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aß42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AßM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aß42 molecules, each containing four ß-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aß42 aggregation.


Subject(s)
Amyloid beta-Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Aggregates , Protein Structure, Secondary
5.
J Am Chem Soc ; 137(46): 14673-85, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26535489

ABSTRACT

Amyloid ß-protein (Aß) sequence length variants with varying aggregation propensity coexist in vivo, where coaggregation and cross-catalysis phenomena may affect the aggregation process. Until recently, naturally occurring amyloid ß-protein (Aß) variants were believed to begin at or after the canonical ß-secretase cleavage site within the amyloid ß-protein precursor. However, N-terminally extended forms of Aß (NTE-Aß) were recently discovered and may contribute to Alzheimer's disease. Here, we have used thioflavin T fluorescence to study the aggregation kinetics of Aß42 variants with N-terminal extensions of 5-40 residues, and transmission electron microscopy to analyze the end states. We find that all variants form amyloid fibrils of similar morphology as Aß42, but the half-time of aggregation (t1/2) increases exponentially with extension length. Monte Carlo simulations of model peptides suggest that the retardation is due to an underlying general physicochemical effect involving reduced frequency of productive molecular encounters. Indeed, global kinetic analyses reveal that NTE-Aß42s form fibrils via the same mechanism as Aß42, but all microscopic rate constants (primary and secondary nucleation, elongation) are reduced for the N-terminally extended variants. Still, Aß42 and NTE-Aß42 coaggregate to form mixed fibrils and fibrils of either Aß42 or NTE-Aß42 catalyze aggregation of all monomers. NTE-Aß42 monomers display reduced aggregation rate with all kinds of seeds implying that extended termini interfere with the ability of monomers to nucleate or elongate. Cross-seeding or coaggregation may therefore represent an important contribution in the in vivo formation of assemblies believed to be important in disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence , Circular Dichroism , Kinetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Monte Carlo Method
6.
J Am Chem Soc ; 137(23): 7509-18, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26001057

ABSTRACT

The presence of amyloid plaques composed of amyloid beta (Aß) fibrils is a hallmark of Alzheimer's disease (AD). The Aß peptide is present as several length variants with two common alloforms consisting of 40 and 42 amino acids, denoted Aß1-40 and Aß1-42, respectively. While there have been numerous reports that structurally characterize fibrils of Aß1-40, very little is known about the structure of amyloid fibrils of Aß1-42, which are considered the more toxic alloform involved in AD. We have prepared isotopically (13)C/(15)N labeled AßM01-42 fibrils in vitro from recombinant protein and examined their (13)C-(13)C and (13)C-(15)N magic angle spinning (MAS) NMR spectra. In contrast to several other studies of Aß fibrils, we observe spectra with excellent resolution and a single set of chemical shifts, suggesting the presence of a single fibril morphology. We report the initial structural characterization of AßM01-42 fibrils utilizing (13)C and (15)N shift assignments of 38 of the 43 residues, including the backbone and side chains, obtained through a series of cross-polarization based 2D and 3D (13)C-(13)C, (13)C-(15)N MAS NMR experiments for rigid residues along with J-based 2D TOBSY experiments for dynamic residues. We find that the first ∼5 residues are dynamic and most efficiently detected in a J-based TOBSY spectrum. In contrast, residues 16-42 are easily observed in cross-polarization experiments and most likely form the amyloid core. Calculation of ψ and φ dihedral angles from the chemical shift assignments indicate that 4 ß-strands are present in the fibril's secondary structure.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Particle Size , Protein Conformation
7.
Inorganica Chim Acta ; 422: 188-192, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25346547

ABSTRACT

The structure of the stable Pd(0) precatalyst [(1,5-cyclooctadiene)(L•Pd)2] (L = AdBrettPhos) for the Pd-catalyzed fluorination of aryl triflates has been further studied by solid state NMR and X-ray cystrallography of the analogous N-phenylmaleimide complex. The reactivity of this complex with CDCl3 to form a dearomatized complex is also presented. In addition, studies suggest that related bulky biaryl phosphine ligands form similar complexes, although the smaller ligand BrettPhos forms a monomeric [(1,5-cyclooctadiene)(L•Pd)] species instead.

8.
Biochemistry ; 53(38): 5987-94, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25184631

ABSTRACT

The membrane protein M2 from influenza-A forms a single-pass transmembrane helix that assembles in lipid membrane as homotetramers whose primary function is to act as a proton transporter for viral acidification. A single residue, histidine 37 (His 37), is known to be responsible for selectivity and plays an integral role in the protein's function. We report pH-dependent (15)N MAS NMR spectra of His 37 within the influenza-A proton conduction domain of M2, M218-60, which has been previously shown to be a fully functional construct and was recently determined to adopt a dimer-of-dimers structure in lipids. By extracting the ratio of [His]/[HisH(+)] as a function of pH, we obtained two doubly degenerate proton disassociation constants, 7.63 ± 0.15 and 4.52 ± 0.15, despite a possible maximum of four. We also report the (1)HNε chemical shifts at pH 6.5 recorded at 60 kHz MAS in a CP-based (1)H-(15)N spectrum. We were unable to detect resonances indicative of direct proton sharing among His 37 side chains when the tetramer is in the +2 state. In the neutral state, His 37 is exclusively in the τ tautomer, indicating that the δ nitrogen is protonated solely as a function of pH. We also found that the plot of [HisH(+)]/[His] as a function of pH is qualitatively similar to previously reported proton conduction rates, indicating that proton conduction rate is proportional to the level of histidine protonation within the channel. Two-dimensional (13)C-(13)C and (13)C-(15)N correlations suggest that at low pH multiple conformations are populated as the spectra broaden and eventually disappear as the acidity is increased. A second highly resolved state at low pH was not observed.


Subject(s)
Histidine/chemistry , Influenza A virus/metabolism , Viral Matrix Proteins/chemistry , Amino Acid Sequence , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protons
9.
J Am Chem Soc ; 135(51): 19237-47, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24304221

ABSTRACT

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ß-strands into ß-sheets but also the ß-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ß-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
10.
J Phys Chem A ; 117(25): 5314-25, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23721288

ABSTRACT

A series of donor-chromophore-acceptor-stable radical (D-C-A-R(•)) molecules having well-defined molecular structures were synthesized to study the factors affecting electron spin polarization transfer from the photogenerated D(+•)-C-A(-•) spin-correlated radical pair (RP) to the stable radical R(•). Theory suggests that the magnitude of this transfer depends on the spin-spin exchange interaction (2JDA) of D(+•)-C-A(-•). Yet, the generality of this prediction has never been demonstrated. In the D-C-A-R(•) molecules described herein, D is 4-methoxyaniline (MeOAn), 2,3-dihydro-1,4-benzodioxin-6-amine (DioxAn), or benzobisdioxole aniline (BDXAn), C is 4-aminonaphthalene-1,8-dicarboximide, and A is naphthalene-1,8:4,5-bis(dicarboximide) (1A,B-3A,B) or pyromellitimide (4A,B-6A,B). The terminal imide of the acceptors is functionalized with either a hydrocarbon (1A-6A) or a 2,2,6,6-tetramethyl-1-piperidinyloxyl radical (R(•)) (1B-6B). Photoexcitation of C with 416-nm laser pulses results in two-step charge separation to yield D(+•)-C-A(-•)-(R(•)). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy using continuous-wave (CW) microwaves at both 295 and 85 K and pulsed microwaves at 85 K (electron spin-echo detection) was used to probe the initial formation of the spin-polarized RP and the subsequent polarization of the attached R(•) radical. The TREPR spectra show that |2JDA| for D(+•)-C-A(-•) decreases in the order MeOAn(+•) > DioxAn(+•) > BDXAn(+•) as a result of their spin density distributions, whereas the spin-spin dipolar interaction (dDA) remains nearly constant. Given this systematic variation in |2JDA|, electron spin-echo-detected EPR spectra of 1B-6B at 85 K show that the magnitude of the spin polarization transferred from the RP to R(•) depends on |2JDA|.

11.
J Am Chem Soc ; 134(46): 19136-45, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23140138

ABSTRACT

The electronic properties of tetrathiafulvalene (TTF) can be tuned by attaching electron-donating or electron-withdrawing substituents. An electron-rich macrocyclic polyether containing two TTF units of different constitutions, namely 4,4'-bis(hydroxymethyl)tetrathiafulvalene (OTTFO) and 4,4'-bisthiotetrathiafulvalene (STTFS), has been synthesized. On two-electron oxidation, a hetero radical dimer is formed between OTTFO(•+) and STTFS(•+). The redox behavior of the macrocyclic polyether has been investigated by electrochemical techniques and UV-vis and electron paramagnetic resonance (EPR) spectroscopies. The [2]catenane in which the macrocyclic polyether is mechanically interlocked with the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) ring has also been prepared using template-directed protocols. In the case of the [2]catenane, the formation of the TTF hetero radical dimer is prevented sterically by the CBPQT(4+) ring. After a one-electron oxidation, a 70:30 ratio of OTTFO(•+) to STTFS(•+) is present at equilibrium, and, as a result, two translational isomers of the [2]catenane associated with these electronically different isomeric states transpire. EPR titration spectroscopy and simulations reveal that the radical states of the two constitutionally different TTF units in the [2]catenane still experience long-range electronic intramolecular coupling interactions, despite the presence of the CBPQT(4+) ring, when one or both of them are oxidized to the radical cationic state. These findings in the case of both the free macrocyclic polyether and the [2]catenane have led to a deeper fundamental understanding of the mechanism of radical cation dimer formation between constitutionally different TTF units.

12.
J Phys Chem A ; 116(9): 2184-91, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22335802

ABSTRACT

The impact of donor-acceptor electronic coupling and bridge energetics on the preference for hole or electron transfer leading to charge recombination in a series of donor-bridge-acceptor (D-B-A) molecules was examined. In these systems, the donor is 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) and acceptor is naphthalene-1,8:4,5-bis(dicarboximide) (NI), while the bridges are either oligo(p-phenyleneethynylene) (PE(n)P, where n = 1-3) 1-3 or oligo(2,7-fluorenone) (FN(n), where n = 1-3) 4-6. Photoexcitation of 1-3 and 4-6 produces DMJ(+•)-An-PE(n)P-NI(-•) and DMJ(+•)-An-FN(n)-NI(-•), respectively, which undergo radical pair intersystem crossing followed by charge recombination to yield both (3*)An and (3*)NI, which are observed by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. (3*)NI is produced by hole transfer from DMJ(+•) to NI(-•), while (3*)An is produced by electron transfer from NI(-•) to DMJ(+•), using the agency of the bridge HOMOs and LUMOs, respectively. By monitoring the initial population of (3*)NI and (3*)An in 1-6, the data show that charge recombination occurs preferentially by selective hole transfer when the bridge is PE(n)P, while it occurs by preferential electron transfer when the bridge is FN(n). Over time, the initial population of (3*)NI decreases, while that of (3*)An increases, indicating that triplet-triplet energy transfer (TEnT) occurs. The observed distance dependence of TEnT from (3*)NI to An is weakly exponential with a decay parameter ß = 0.08 Å(-1) for the PE(n)P series and ß = 0.03 Å(-1) for the FN(n) series. In the PE(n)P series, this weak distance dependence is attributed to a transition from the superexchange regime to hopping transport as the energy gap for triplet energy injection onto the bridge becomes significantly smaller as n increases, while in the FN(n) series the corresponding energy gap is small for all n resulting in triplet energy transport by the hopping mechanism.

13.
J Phys Chem A ; 116(8): 1923-30, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22296165

ABSTRACT

Intersystem crossing involving photogenerated strongly spin exchange-coupled radical ion pairs in a series of donor-bridge-acceptor molecules was examined. These molecules have a 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) donor either connected directly or connected by a phenyl bridge (Ph), to pyromellitimide (PI), 1 and 2, respectively, or naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptors, 3 and 4, respectively. Femtosecond transient optical absorption spectroscopy shows that photodriven charge separation produces DMJ(+•)-PI(-•) or DMJ(+•)-NI(-•) quantitatively in 1-4 (τ(CS) ≤ 10 ps), and that charge recombination occurs with τ(CR) = 268 and 158 ps for 1 and 3, respectively, and with τ(CR) = 2.6 and 10 ns for 2 and 4, respectively. Magnetic field effects (MFEs) on the neutral triplet state yield produced by charge recombination were used to measure the exchange coupling (2J) between DMJ(+•) and PI(-•) or NI(-•), giving 2J > 600 mT for 1-3 and 2J = 170 mT for 4. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy revealed that the formation of (3)*An upon charge recombination occurs by spin-orbit charge transfer intersystem crossing (SOCT-ISC) and/or radical-pair intersystem crossing (RP-ISC) mechanisms with the magnitude of 2J determining which triplet formation mechanism dominates. SOCT-ISC is the exclusive triplet formation mechanism in 1-3, whereas both RP-ISC and SOCT-ISC are active for 4. The triplet sublevels populated by SOCT-ISC in 1-4 depend on the donor-acceptor geometry in the charge separated state. This is consistent with the fact that the SOCT-ISC mechanism requires the relevant donor and acceptor orbitals to be nearly perpendicular, so that electron transfer results in a large orbital angular momentum change that must be compensated by a fast spin flip to conserve overall system angular momentum.

14.
J Phys Chem A ; 115(26): 7538-49, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21630656

ABSTRACT

tert-Butylphenylnitroxide (BPNO(•)) and α,γ-bisdiphenylene-ß-phenylallyl (BDPA(•)) stable radicals are each attached to zinc meso-tetraphenylporphyrin (ZnTPP) at a fixed distance using one of the ZnTPP phenyl groups. BPNO(•) and BDPA(•) are oriented para (1 and 3, respectively) or meta (2 and 4, respectively) relative to the porphyrin macrocycle. Following photoexcitation of 1-4, transient optical absorption spectroscopy is used to observe excited state quenching of (1)*ZnTPP by the radicals and time-resolved electron paramagnetic resonance (TREPR) spectroscopy is used to monitor the spin dynamics of the paramagnetic product states. The presence of BPNO(•) or BDPA(•) accelerates the intersystem crossing rate of (1)*ZnTPP about 10- to 500-fold in 1-4 depending on the structure compared to that of (1)*ZnTPP itself. In addition, the lifetime of (3)*ZnTPP in 1 is shorter than that of (3)*ZnTPP itself as a result of enhanced intersystem crossing (EISC) from (3)*ZnTPP to the ground state. The TREPR spectra of the three unpaired spins produced within 1 and 2 show spin-polarized excited doublet (D(1)) and quartet (Q) states and subsequent formation of a spin-polarized ground state radical (D(0)). All three signals are absorptive for 1 and emissive for 2. Polarization inversion of the Q state is observed on a tens of nanoseconds time scale in 2, while no polarization inversion is observed for 1. The lack of polarization inversion in 1 is attributed to the short lifetime of the doublet-quartet manifold as a result of the very large exchange interaction. The TREPR spectra of 3 and 4 show ground state radical polarization at X-band (9.5 GHz) at room temperature, but not at 85 K, and similarly no polarization is observed at W-band (94 GHz). No evidence of excited doublet or quartet states is observed, indicating that the exchange interaction is both weak and temperature dependent. These results show that although ultrafast EISC produces (3)*ZnTPP within 1-4, the magnitude of the exchange interactions between the three relevant spins in the resulting (3)*ZnTPP-BPNO(•) and (3)*ZnTPP-BDPA(•) systems dramatically alters their spin dynamics.

15.
J Am Chem Soc ; 133(12): 4538-47, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21366312

ABSTRACT

Two donor-acceptor [3]catenanes-composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components-have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called "molecular flask" under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.


Subject(s)
Heterocyclic Compounds/chemistry , Catenanes/chemistry , Dimerization , Free Radicals/chemistry , Models, Molecular , Oxidation-Reduction
16.
Chemistry ; 17(1): 213-22, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21207618

ABSTRACT

Rotacatenanes are exotic molecular compounds that can be visualized as a unique combination of a [2]catenane and a [2]rotaxane, thereby combining both the circumrotation of the ring component (rotary motion) and the shuttling of the dumbbell component (translational motion) in one structure. Herein, we describe a strategy for the synthesis of a new switchable [3]rotacatenane and the investigation of its switching properties, which rely on the formation of tetrathiafulvalene (TTF) radical π-dimer interactions-namely, the mixed-valence state (TTF(2) )(+.) and the radical-cation dimer state (TTF(+.) )(2) -under ambient conditions. A template-directed approach, based on donor-acceptor interactions, has been developed, resulting in an improved yield of the key precursor [2]catenane, prior to rotacatenation. The nature of the binding between the [2]catenane and selected π-electron-rich templates has been elucidated by using X-ray crystallography and UV/Vis spectroscopy as well as isothermal titration microcalorimetry. The multistate switching mechanism of the [3]rotacatenane has been demonstrated by cyclic voltammetry and EPR spectroscopy. Most notably, the radical-cation dimer state (TTF(+.) )(2) has been shown to enter into an equilibrium by forming the co-conformation in which the two 1,5-dioxynaphthalene (DNP) units co-occupy the cavity of tetracationic cyclophane, thus enforcing the separation of TTF radical-cation dimer (TTF(+.) )(2) . The population ratio of this equilibrium state was found to be 1:1. We believe that this research demonstrates the power of constructing complex molecular machines using template-directed protocols, enabling us to make the transition from simple molecular switches to their multistate variants for enhancing information storage in molecular electronic devices.

17.
J Am Chem Soc ; 133(5): 1240-3, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21192109

ABSTRACT

A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.

18.
Nat Chem ; 2(1): 42-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21124379

ABSTRACT

The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication.


Subject(s)
Free Radicals/chemistry , Dimerization , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Pyridinium Compounds/chemistry , Quantum Theory , Rotaxanes/chemistry , Spectrophotometry, Ultraviolet , Thermodynamics , Viologens/chemistry
19.
J Am Chem Soc ; 132(43): 15427-34, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-20942407

ABSTRACT

Photoinitiated charge separation (CS) and recombination (CR) in a series of donor-bridge-acceptor (D-B-A) molecules with cross-conjugated, linearly conjugated, and saturated bridges have been compared and contrasted using time-resolved spectroscopy. The photoexcited charge transfer state of 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) is the donor, and naphthalene-1,8:4,5-bis(dicarboximide) (NI) is the acceptor in all cases, along with 1,1-diphenylethene, trans-stilbene, diphenylmethane, and xanthone bridges. Photoinitiated CS through the cross-conjugated 1,1-diphenylethene bridge is about 30 times slower than through its linearly conjugated trans-stilbene counterpart and is comparable to that observed through the diphenylmethane bridge. This result implies that cross-conjugation strongly decreases the π orbital contribution to the donor-acceptor electronic coupling so that electron transfer most likely uses the bridge σ system as its primary CS pathway. In contrast, the CS rate through the cross-conjugated xanthone bridge is comparable to that observed through the linearly conjugated trans-stilbene bridge. Molecular conductance calculations on these bridges show that cross-conjugation results in quantum interference effects that greatly alter the through-bridge donor-acceptor electronic coupling as a function of charge injection energy. These calculations display trends that agree well with the observed trends in the electron transfer rates.


Subject(s)
Photochemical Processes , Absorption , Anthracenes/chemistry , Electron Spin Resonance Spectroscopy , Electron Transport , Naphthalenes/chemistry , Thermodynamics
20.
Nat Chem ; 2(10): 870-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20861904

ABSTRACT

Two [3]catenane 'molecular flasks' have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF)2•+ and radical-cation (TTF•+)2 states inside the 'molecular flasks.' The experimental data, collected in the solid state as well as in solution under ambient conditions, together with supporting quantum mechanical calculations, are consistent with the formation of stabilized paramagnetic mixed-valence dimers, and then diamagnetic radical-cation dimers following subsequent one-electron oxidations of the [3]catenanes.


Subject(s)
Catenanes/chemistry , Dimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...