Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 4(1): 68, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572944

ABSTRACT

BACKGROUND: The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS: The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS: In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.

2.
Animals (Basel) ; 12(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35203237

ABSTRACT

The goal of this experiment was to determine the implications of dietary standardized ileal digestible lysine (SID Lys:NE) on body weight variability of growing pigs grouped in three initial body weight categories (BWCAT). Animals (N = 1170) were individually weighed and classified in 3 BWCAT (Lp: 32.1 ± 2.8 kg, Mp: 27.5 ± 2.3 kg, and Sp: 23.4 ± 2.9 kg). Afterward, pens were randomly allocated to five dietary SID Lys:NE treatments (3.25 to 4.88 g/Mcal) that were fed over 47 days. Pen coefficient of variation of Sp at day 47 was linearly increased when reducing SID Lys:NE (p < 0.01), from 9.8% to 15.4% between the two extreme dietary levels. The linear effect was different in Sp compared to Lp (p < 0.05) as no effect of SID Lys:NE was reported in the latter BWCAT (p = 0.992). Further analysis showed that this effect was explained by a growth restriction that was more severe the lightest the pigs were at the start of the trial. To summarize, swine body weight variability can be negatively affected when SID Lys requirements are not fulfilled.

3.
Animals (Basel) ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932974

ABSTRACT

This work aimed to determine the impacts of lowering dietary net energy (NE) density in two swine production systems that produce pigs with different carcass traits. To ensure that dietary lysine was not limiting growth, two studies were conducted in a 2 × 2 factorial arrangement with NE and standardized ileal digestible lysine (SID Lys) as experimental factors. A total of 1248 pigs were used in each study, Pietrain (Exp. 1, males non-castrated) or Duroc (Exp. 2, males castrated) sired. Reducing NE resulted in a greater feed intake; however, this was not sufficient to reach the same NE intake. While in Exp. 1 a 3.2% lower NE intake did not impair average daily gain (ADG; p = 0.220), in Exp. 2 a 4.7% lower NE intake reduced ADG by 1.4% (p = 0.027). Furthermore, this effect on ADG entailed a reduced ham fat thickness (p = 0.004) of the first marketed pigs. Increasing SID Lys only had a positive effect in Exp. 1, but no significant interaction between NE and SID Lys was reported (p ≥ 0.100). Therefore, dietary NE can be reduced without impairing growth performance when pigs can increase feed intake sufficiently, and thus, limit energy deficiencies.

4.
Transl Anim Sci ; 4(3): txaa129, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32818174

ABSTRACT

The main goals of this study were to determine whether boars and gilts respond differently to the standardized ileal digestible lysine to net energy ratio (SID Lys:NE) and model the response to optimize growth performance. A total of 780 finishing pigs, 390 boars and 390 gilts [Pietrain NN × (Landrace × Large White)], with an initial individual body weight of 70.4 ± 9.2 for boars and 68.7 ± 8.0 kg for gilts, were used in a 41-d dose-response experiment. Pens (13 pigs per pen) were randomly allocated to a dietary treatment (2.64, 3.05, 3.46, 3.86, 4.27 g SID Lys/Mcal NE) by block and sex, with six replicates per treatment and sex. Two isoenergetic diets (2,460 kcal NE/kg), representing the extreme SID Lys:NE, were formulated and then mixed. Pigs were individually weighed at days 0, 22, and 41, when the experiment finished. The differential effect of SID Lys:NE on growth performance and carcass composition between sexes was analyzed with orthogonal polynomial contrasts to compare the linear and quadratic trends in each sex. In addition, broken-line linear (BLL) models to optimize average daily gain (ADG), including average daily feed intake (ADFI) as a covariate, were fitted when possible. As expected, boars had a greater ADG and feed efficiency (G:F; P < 0.001) than gilts, but there was no evidence of differences in ADFI (P = 0.470). Increasing SID Lys:NE had a greater linear impact on boars ADG (P = 0.087), G:F (P = 0.003), and carcass leanness (P = 0.032). In contrast, gilts showed a greater linear increase in SID Lys intake per kg gain (P < 0.001) and feed cost per kg gain (P = 0.005). The best fitting BLL models showed that boars maximized ADG at 3.63 g SID Lys/Mcal NE [95% confidence interval (CI): (3.32 to 3.94)], although another model with a similar fit, compared with the Bayesian information criterion, reported the optimum at 4.01 g SID Lys/Mcal NE [95% CI: (3.60, 4.42)]. The optimum to maximize ADG for gilts was estimated at 3.10 g SID Lys/Mcal NE [95% CI: (2.74, 3.47)]. Thus, the present study confirmed that boars and gilts have a different linear response to SID Lys:NE, explained by the greater protein deposition potential of boars. Likewise, BLL models indicated that boars require a higher SID Lys:NE to maximize ADG from 70 to 89 kg. These results suggest that split feeding of finishing boars and gilts could be beneficial in terms of both performance and cost return.

5.
Animals (Basel) ; 10(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545783

ABSTRACT

An experiment was conducted analyzing whether growing pigs classified in different initial body weight categories (BWCAT) have a different response to increasing standardized ileal digestible lysine to net energy ratio (SID Lys:NE), to assess whether light pigs might benefit from being differentially fed. A total of 1170 pigs in pens of 13 were individually weighed, classified in 3 BWCAT (Lp: 32.1 ± 2.8 kg, Mp: 27.5 ± 2.3 kg, and Sp: 23.4 ± 2.9 kg), and afterwards pens were randomly allocated to 5 dietary SID Lys:NE treatments (3.25 to 4.88 g/Mcal) fed over 47 days. Results reported a greater linear improvement of growth and feed efficiency of Sp compared to Lp when increasing SID Lys:NE. Modelling the response to SID Lys:NE using quadratic polynomial models showed that the levels to reach 98% of maximum growth from day 0-47 were 3.67, 3.88, 4.06 g SID Lys/Mcal NE for Lp, Mp, and Sp, respectively. However, due to the overlapping SID Lys:NE confidence intervals at maximum performance, it was not possible to determine if requirements were different between BWCAT. Summarizing, the results suggested that feeding small pigs greater SID Lys:NE than large pigs can improve their performance and increase the efficiency of the overall production system.

6.
Animals (Basel) ; 10(2)2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32028658

ABSTRACT

This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.

7.
Porcine Health Manag ; 4: 14, 2018.
Article in English | MEDLINE | ID: mdl-29988623

ABSTRACT

BACKGROUND: The aim was to test two strategies to improve the growth rate of the slow-growth pigs and to increase the batch's homogeneity at slaughter. In Trial 1 a total of 264 weaned piglets were distributed into 24 pens (11 piglets/pen) according to sex and initial body weight (BW) for the transition period (T; 28 d to 64 d). During the T period, a commercial lidded feeder hopper was used (3.7 pigs/feeder space). When moving to the growing facilities, the 24 pens were maintained and split into two groups of 12 according to sex, feeder type (HD or 5.5 pigs/feeder space and LD or 2.2 pigs/feeder space). In Trial 2 a total of 1067 piglets were used and classified, when leaving the nursery at 63d of age, as Heavy (Hp, n = 524) and Light (Lp, n = 543) pigs. Along the growing period, Hp and half of the Lp pigs were fed with four consecutive feeds, following a standard feeding program (Std). Alternatively, the other half of the Lp pigs were fed according to a budget approach, changing the first three feeds on the basis of an equivalent feed consumption instead of age (Sp). RESULTS: In Trial 1, higher BW (80.2 kg vs. 82.1 kg; P = 0.02), ADG (704 g/d vs. 725 g/d; P = 0.02) and lower number of lesions were observed for pigs raised in the LD treatment, compared to the HD treatment at d 154 (P < 0.05). The CV of the final BW was numerically lower for the LD treatment. In Trial 2, higher BW and ADG and lower CV were observed for the LSp pigs from 83 d until 163 d (P < 0.001) of age compared to LStd. Moreover, an interaction observed for carcass weight at slaughter (P = 0.016) showed that the Sp pigs had a higher carcass weight than did the Std pigs, and the difference increased as the emptying of the barn facility advanced. CONCLUSION: It is concluded that feeder space and feeding management may affect the growth of growing-finishing pigs and body-weight homogeneity at the end of the period.

8.
Transl Anim Sci ; 2(4): 383-395, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32704721

ABSTRACT

The aim of this observational study is to identify risk factors associated with body weight (BW) variability in three data sets (DS) in commercial conditions. A total of 1,009 (DS1), 460 (DS2), and 1304 (DS3) male and female crossbreed pigs (Pietrain × [Landrace × Large White]), respectively, were included in each trial. Pigs were periodically weighed until slaughter. Then, variables such as length of gestation, length of lactation, parity, litter size, sex, birth BW, and ADG were considered. Pigs remaining on the farm after two loads to the slaughterhouse were defined as last group of animals sent to slaughterhouse (LGS). Descriptive statistics of variability were calculated, and a risk analysis approach was used to look for the factors related to LGS. A multiple logistic regression was performed to identify all variables that were significant (P < 0.05). The risk ratio (RR), odds ratio (OR), and population attributable risk (PAR) were calculated for all of the significant variables after transforming all of them into binary factors using the 25th percentile as the cut-off point. Results showed that the major part of the variability (as CV) comes from birth (20% to 25%) and increased only a little during lactation and 14-d post weaning. From this point onwards, CV tended to decrease, as pigs got closer to the marketing weight (down 11.5% to 12.7%). Regarding the indicators selected, RR, OR, and PAR presented similar trends in the three DS studied. Therefore, for the variables finally included, these indicators had their minimum values at the start of the cycle and then gradually increased at the end. Those results, based on an epidemiological approach, suggest that the closer to the end of the cycle the greater the probability for a light piglet of being/becoming LGS. It might be explained by the shorter available time to efficiently implement preventive measures aimed to improve the performance of delayed pigs and, thus, reducing variability.Those results, based on an epidemiological approach, make sense as the probability for a light piglet to be a LGS increases the closer to the end of the cycle, due to the short time to implement preventive measures and increase the performance of delayed pigs and reduce variability. The differential PAR associated with both, the nursery and the growing period, was 1.7% and 1.5% for DS1, 5.1% and 3.1% for DS2, and 3.7% and 2.8% for DS3. For the lactation period, the results were 4.3% for DS2 and 4.5% for DS3. Results suggest that the most critical periods, in relation to retardation of growth in swine, are lactation and nursery. Implementing measures that maintain risk factors under or above thresholds, especially in the initial phases of growth, will reduce the percentage of LGS pigs and positively affect the overall homogeneity of the batch.

SELECTION OF CITATIONS
SEARCH DETAIL
...