Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
G3 (Bethesda) ; 12(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35143647

ABSTRACT

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Subject(s)
Densovirinae , Penaeidae , Animals , Australia , Densovirinae/genetics , Genome, Viral , Penaeidae/genetics , Polymerase Chain Reaction
3.
Animals (Basel) ; 12(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35158558

ABSTRACT

Intensification of the shrimp sector, also referred to as vertical expansion, has been predominately driven by consecutive incidences of global disease outbreaks, which have caused enormous economic loss for the main producer countries. A growing segment of the shrimp farming industry has opted to use production systems with higher density, biosecurity, and operating control to mitigate the risks posed by disease. However, successful super-intensive shrimp production is reliant on an advanced understanding of many important biological and economic parameters in the farming system, coupled with effective monitoring, to maintain optimal production. Compared to traditional extensive or semi-intensive systems, super-intensive systems require higher inputs of feed, energy, labor, and supplements. These systems are highly sensitive to the interactions between these different inputs and require that the biological and economical parameters of farming are carefully balanced to ensure success. Advancing nutritional knowledge and tools to support consistent and efficient production of shrimp in these high-cost super-intensive systems is also necessary. Breeding programs developing breeding-lines selected for these challenging super-intensive environments are critical. Understanding synergies between the key areas of production systems, nutrition, and breeding are crucial for super-intensive farming as all three areas coalesce to influence the health of shrimp and commercial farming success. This article reviews current strategies and innovations being used for Litopenaeus vannamei in production systems, nutrition, and breeding, and discusses the synergies across these areas that can support the production of healthy and high-quality shrimp in super-intensive systems. Finally, we briefly discuss some key issues of social license pertinent to the super-intensive shrimp farming industry.

4.
Sci Rep ; 8(1): 13553, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30202061

ABSTRACT

The black tiger shrimp (Penaeus monodon) remains the second most widely cultured shrimp species globally; however, issues with disease and domestication have seen production levels stagnate over the past two decades. To help identify innovative solutions needed to resolve bottlenecks hampering the culture of this species, it is important to generate genetic and genomic resources. Towards this aim, we have produced the most complete publicly available P. monodon transcriptome database to date based on nine adult tissues and eight early life-history stages (BUSCO - Complete: 98.2% [Duplicated: 51.3%], Fragmented: 0.8%, Missing: 1.0%). The assembly resulted in 236,388 contigs, which were then further segregated into 99,203 adult tissue specific and 58,678 early life-history stage specific clusters. While annotation rates were low (approximately 30%), as is typical for a non-model organisms, annotated transcript clusters were successfully mapped to several hundred functional KEGG pathways. Transcripts were clustered into groups within tissues and early life-history stages, providing initial evidence for their roles in specific tissue functions, or developmental transitions. We expect the transcriptome to provide an essential resource to investigate the molecular basis of commercially relevant-significant traits in P. monodon and other shrimp species.


Subject(s)
Gene Expression Regulation, Developmental , Genome/genetics , Penaeidae/genetics , Transcriptome/genetics , Animals , Aquaculture , Gene Expression Profiling , Multigene Family/genetics , Quantitative Trait Loci/genetics , RNA, Long Noncoding/genetics
5.
Dis Aquat Organ ; 129(2): 145-158, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29972375

ABSTRACT

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) can cause mass mortalities in western blue shrimp Penaeus stylirostris, runt deformity syndrome in Pacific white shrimp P. vannamei and scalloped abdominal shell deformities in black tiger shrimp P. monodon. In P. monodon, however, PCR-based diagnosis of IHHNV can be complicated by the presence of a chromosome-integrated, non-replicating endogenous viral element (EVE). To facilitate high-throughput screening of P. monodon for IHHNV infection and/or EVE sequences, here we report real-time PCR tests designed to specifically detect IHHNV Lineage I, II and III but not EVE Type A sequences and vice versa. Using 108 dsDNA copies of plasmid (p)DNA controls containing either IHHNV or EVE-Type A sequences, both tests displayed absolute specificity. The IHHNV-q309 PCR reliably detected down to ≤10 copies of pDNA, at which levels a 309F/R PCR amplicon was just detectable, and the presence of an IHHNV-EVE sequence did not significantly impact its sensitivity. The IHHNV-qEVE PCR was similarly sensitive. Testing of batches of P. monodon clinical samples from Vietnam/Malaysia and Australia identified good diagnostic concordance between the IHHNV-q309 and 309F/R PCR tests. As expected for a sequence integrated into host chromosomal DNA, IHHNV-qEVE PCR Ct values were highly uniform among samples from shrimp in which an EVE was present. The highly specific and sensitive IHHNV-q309 and IHHNV-qEVE real-time PCR tests described here should prove useful for selecting broodstock free of IHHNV infection and in maintaining breeding populations of P. monodon specific pathogen free for IHHNV, and if desired, also free of IHHNV-EVE sequences.


Subject(s)
DNA, Viral/genetics , Densovirinae/physiology , Penaeidae/virology , Real-Time Polymerase Chain Reaction/methods , Animals , Densovirinae/genetics , Genome, Viral , Host-Pathogen Interactions
6.
J Biotechnol ; 129(3): 391-9, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17350129

ABSTRACT

Housekeeping genes are often used as references when quantifying the relative abundance of transcripts of interest, because it is assumed that they are stably expressed across tissues and developmental stages. Standard housekeeping genes are targeted particularly in organisms where there is no detailed information on gene expression profiles. Here, the validity of using the two widely accepted housekeeping genes, 18S rRNA and beta-actin, as reference genes to normalize real-time RT-PCR gene expression data from the Kuruma shrimp, Marsupenaeus japonicus, was tested. Expression patterns of two target genes in a diverse sample set of embryonic, larval, post-larval and gonad mRNAs were quantified using relative and absolute real-time RT-PCR procedures. Comparison of these approaches revealed significant differences (P<0.0001) in transcript level profiles between the relative and absolute procedures for both target genes. When 18S rRNA was used as a reference, target gene expression was more similar to that of the absolute method than when beta-actin was used as a reference. Variability between the relative and absolute procedures occurred for a greater percentage of the embryonic stages compared to later developmental stages. This study indicates that the use of 18S rRNA and beta-actin for studying relative gene expression patterns in Kuruma shrimp embryonic, larval, post-larval and gonad samples will give significantly variable results, and illustrates the proposition that housekeeping genes are not necessarily appropriate references for real-time RT-PCR data normalization. Until suitable reference genes are characterized, gene expression experiments using the studied Kuruma shrimp tissues of different morphological developmental stages should use absolute quantification procedures.


Subject(s)
Actins/metabolism , Gene Expression Profiling/methods , Penaeidae/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/metabolism , Animals , DNA Primers , Data Interpretation, Statistical , Penaeidae/genetics , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction
7.
Mar Biotechnol (NY) ; 9(3): 377-87, 2007.
Article in English | MEDLINE | ID: mdl-17375354

ABSTRACT

A PL10 vasa-like gene was isolated from the Kuruma shrimp Marsupenaeus japonicus and therefore called Mjpl10. It is differentially expressed during embryonic, larval, and postlarval development, and in female and male gonads. Using absolute real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrate that Mjpl10 transcripts are present in the two-cell embryo, suggesting it is maternally expressed, and continually at low levels throughout embryogenesis. Mjpl10 expression increases significantly in the first 25 h after hatching (nauplii IV) and then decreases in a linear fashion by 316-fold over the next 52-day period. Its continued expression throughout embryonic and larval development is compatible with a conserved role in early germ cell specification. Transcript levels of Mjpl10 are also detected in the ovary and testes of mature adults.


Subject(s)
Gene Expression Regulation, Developmental , Gonads/growth & development , Gonads/metabolism , Penaeidae/embryology , Penaeidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Larva , Male , Molecular Sequence Data , Organ Specificity , Penaeidae/growth & development , Phylogeny , RNA/genetics , RNA/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...