Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Am J Ophthalmol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871269

ABSTRACT

PURPOSE: To assess the safety and efficacy of AAV5-hRKp.RPGR in participants with retinitis pigmentosa GTPase regulator (RPGR)-associated X-linked retinitis pigmentosa (XLRP). DESIGN: Open-label, phase 1/2 dose escalation/expansion study (NCT03252847). METHODS: Males (≥5 years old) with XLRP-RPGR were evaluated. In the dose escalation phase, subretinal AAV5-hRKp.RPGR (low: 1.0×1011 vg/ml; intermediate: 2.0×1011 vg/ml; high: 4.0×1011 vg/ml) was administered to the poorer-seeing eye (n = 10). Dose confirmation (intermediate dose) was carried out in 3 pediatric participants. In the dose expansion phase, 36 participants were randomized 1:1:1 to immediate (low or intermediate dose) or deferred (control) treatment. The primary outcome was safety. Secondary efficacy outcomes included static perimetry, microperimetry, vision-guided mobility, best corrected visual acuity, and contrast sensitivity. Safety and efficacy outcomes were assessed for 52 weeks for immediate treatment participants and 26 weeks for control participants. RESULTS: AAV5-hRKp.RPGR was safe and well tolerated, with no reported dose-limiting events. Most adverse events (AEs) were transient and related to the surgical procedure, resolving without intervention. Two serious AEs were reported with immediate treatment (retinal detachment, uveitis). A third serious AE (increased intraocular pressure) was reported outside the reporting period. All ocular inflammation-related AEs responded to corticosteroids. Treatment with AAV5-hRKp.RPGR resulted in improvements in retinal sensitivity and functional vision compared with the deferred group at Week 26; similar trends were observed at Week 52. CONCLUSIONS: AAV5-hRKp.RPGR demonstrated an anticipated and manageable AE profile through 52 weeks. Safety and efficacy findings support investigation in a phase 3 trial.

2.
N Engl J Med ; 390(21): 1972-1984, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38709228

ABSTRACT

BACKGROUND: CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS: We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS: EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS: The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).


Subject(s)
Antigens, Neoplasm , Cell Cycle Proteins , Cytoskeletal Proteins , Gene Editing , Retinal Degeneration , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , CRISPR-Cas Systems , Cytoskeletal Proteins/genetics , Genetic Therapy/adverse effects , Injections, Intraocular , Quality of Life , Retina , Retinal Degeneration/therapy , Retinal Degeneration/genetics , Visual Acuity
3.
NPJ Genom Med ; 9(1): 31, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802398

ABSTRACT

Advances in gene sequencing technologies have accelerated the identification of genetic variants, but better tools are needed to understand which are causal of disease. This would be particularly useful in fields where gene therapy is a potential therapeutic modality for a disease-causing variant such as inherited retinal disease (IRD). Here, we apply structure-based network analysis (SBNA), which has been successfully utilized to identify variant-constrained amino acid residues in viral proteins, to identify residues that may cause IRD if subject to missense mutation. SBNA is based entirely on structural first principles and is not fit to specific outcome data, which makes it distinct from other contemporary missense prediction tools. In 4 well-studied human disease-associated proteins (BRCA1, HRAS, PTEN, and ERK2) with high-quality structural data, we find that SBNA scores correlate strongly with deep mutagenesis data. When applied to 47 IRD genes with available high-quality crystal structure data, SBNA scores reliably identified disease-causing variants according to phenotype definitions from the ClinVar database. Finally, we applied this approach to 63 patients at Massachusetts Eye and Ear (MEE) with IRD but for whom no genetic cause had been identified. Untrained models built using SBNA scores and BLOSUM62 scores for IRD-associated genes successfully predicted the pathogenicity of novel variants (AUC = 0.851), allowing us to identify likely causative disease variants in 40 IRD patients. Model performance was further augmented by incorporating orthogonal data from EVE scores (AUC = 0.927), which are based on evolutionary multiple sequence alignments. In conclusion, SBNA can used to successfully identify variants as causal of disease in human proteins and may help predict variants causative of IRD in an unbiased fashion.

5.
Ophthalmol Retina ; 8(1): 42-48, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37660736

ABSTRACT

PURPOSE: Classify the appearance and quantify the growth rate of chorioretinal atrophy in patients who received voretigene neparvovec-rzyl (VN) for RPE65-mediated retinal degeneration. DESIGN: Multicenter retrospective analysis. SUBJECTS: Patients who underwent subretinal VN injection at 5 institutions and demonstrated posterior-pole chorioretinal atrophy. METHODS: Ultrawidefield scanning laser ophthalmoscopy or color fundus photos were assessed before and after subretinal VN. Atrophy was defined as regions with ≥ 2 of the following: (1) partial or complete retinal pigment epithelial depigmentation; (2) round shape; (3) sharp margins; and (4) increased visibility of choroidal vessels. Atrophy was qualitatively classified into different subtypes. All atrophy was manually segmented. Linear mixed-effects models with random slopes and intercepts were fit using atrophy area and square root of atrophy area. MAIN OUTCOME MEASURES: Number of eyes with each atrophy pattern, and slopes of linear mixed-effects models. RESULTS: Twenty-seven eyes from 14 patients across 5 centers developed chorioretinal atrophy after subretinal VN. A mean of 5.8 ± 2.7 images per eye obtained over 2.2 ± 0.8 years were reviewed, and atrophy was categorized into touchdown (14 eyes), nummular (15 eyes), and perifoveal (12 eyes) subtypes. Fifteen eyes demonstrated > 1 type of atrophy. Thirteen of 14 patients demonstrated bilateral atrophy. The slopes of the mixed-effects models of atrophy area and square root of atrophy area (estimate ± standard error) were 1.7 ± 1.3 mm2/year and 0.6 ± 0.2 mm/year for touchdown atrophy, 5.5 ± 1.3 mm2/year and 1.2 ± 0.2 mm/year for nummular atrophy, and 16.7 ± 1.8 mm2/year and 2.3 ± 0.2 mm/year for perifoveal atrophy. The slopes for each type of atrophy were significantly different in the square root of atrophy model, which best fit the data (P < 0.05). CONCLUSIONS: Chorioretinal atrophy after subretinal VN for RPE65-mediated retinal degeneration developed according to a touchdown, nummular, and/or perifoveal pattern. Perifoveal atrophy grew the most rapidly, while touchdown atrophy grew the least rapidly. Understanding the causes of these findings, which are present in a minority of patients, merits further investigation. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Choroid Diseases , Retinal Degeneration , Humans , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retrospective Studies , Atrophy
6.
medRxiv ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37461650

ABSTRACT

With continued advances in gene sequencing technologies comes the need to develop better tools to understand which mutations cause disease. Here we validate structure-based network analysis (SBNA)1,2 in well-studied human proteins and report results of using SBNA to identify critical amino acids that may cause retinal disease if subject to missense mutation. We computed SBNA scores for genes with high-quality structural data, starting with validating the method using 4 well-studied human disease-associated proteins. We then analyzed 47 inherited retinal disease (IRD) genes. We compared SBNA scores to phenotype data from the ClinVar database and found a significant difference between benign and pathogenic mutations with respect to network score. Finally, we applied this approach to 65 patients at Massachusetts Eye and Ear (MEE) who were diagnosed with IRD but for whom no genetic cause was found. Multivariable logistic regression models built using SBNA scores for IRD-associated genes successfully predicted pathogenicity of novel mutations, allowing us to identify likely causative disease variants in 37 patients with IRD from our clinic. In conclusion, SBNA can be meaningfully applied to human proteins and may help predict mutations causative of IRD.

7.
JCI Insight ; 8(15)2023 08 08.
Article in English | MEDLINE | ID: mdl-37261916

ABSTRACT

BACKGROUNDA randomized clinical trial from 1984 to 1992 indicated that vitamin A supplementation had a beneficial effect on the progression of retinitis pigmentosa (RP), while vitamin E had an adverse effect.METHODSSequencing of banked DNA samples from that trial provided the opportunity to determine whether certain genotypes responded preferentially to vitamin supplementation.RESULTSThe genetic solution rate was 587 out of 765 (77%) of sequenced samples. Combining genetic solutions with electroretinogram outcomes showed that there were systematic differences in severity and progression seen among different genetic subtypes of RP, extending findings made for USH2A, RHO, RPGR, PRPF31, and EYS. Baseline electroretinogram 30-Hz flicker implicit time was an independent, strong predictor of progression rate. Using additional data and baseline implicit time as a predictor, the deleterious effect of vitamin E was still present. Surprisingly, the effect of vitamin A progression in the cohort as a whole was not detectable, with or without data from subsequent trials. Subgroup analyses are also discussed.CONCLUSIONOverall, genetic subtype and implicit time have significant predictive power for a patient's rate of progression, which is useful prognostically. While vitamin E supplementation should still be avoided, these data do not support a generalized neuroprotective effect of vitamin A for all types of RP.TRIAL REGISTRATIONClinicalTrials.gov NCT00000114, NCT00000116, and NCT00346333.FUNDINGFoundation Fighting Blindness and the National Eye Institute: R01 EY012910, R01 EY031036, R01 EY026904, and P30 EY014104.


Subject(s)
Retinitis Pigmentosa , Vitamin A , Humans , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/genetics , Vitamin E , Genotype , Dietary Supplements , Eye Proteins/genetics
8.
JAMA Netw Open ; 6(5): e2312231, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37155167

ABSTRACT

Importance: Newborn genome sequencing (NBSeq) can detect infants at risk for treatable disorders currently undetected by conventional newborn screening. Despite broad stakeholder support for NBSeq, the perspectives of rare disease experts regarding which diseases should be screened have not been ascertained. Objective: To query rare disease experts about their perspectives on NBSeq and which gene-disease pairs they consider appropriate to evaluate in apparently healthy newborns. Design, Setting, and Participants: This survey study, designed between November 2, 2021, and February 11, 2022, assessed experts' perspectives on 6 statements related to NBSeq. Experts were also asked to indicate whether they would recommend including each of 649 gene-disease pairs associated with potentially treatable conditions in NBSeq. The survey was administered between February 11 and September 23, 2022, to 386 experts, including all 144 directors of accredited medical and laboratory genetics training programs in the US. Exposures: Expert perspectives on newborn screening using genome sequencing. Main Outcomes and Measures: The proportion of experts indicating agreement or disagreement with each survey statement and those who selected inclusion of each gene-disease pair were tabulated. Exploratory analyses of responses by gender and age were conducted using t and χ2 tests. Results: Of 386 experts invited, 238 (61.7%) responded (mean [SD] age, 52.6 [12.8] years [range 27-93 years]; 126 [52.9%] women and 112 [47.1%] men). Among the experts who responded, 161 (87.9%) agreed that NBSeq for monogenic treatable disorders should be made available to all newborns; 107 (58.5%) agreed that NBSeq should include genes associated with treatable disorders, even if those conditions were low penetrance; 68 (37.2%) agreed that actionable adult-onset conditions should be sequenced in newborns to facilitate cascade testing in parents, and 51 (27.9%) agreed that NBSeq should include screening for conditions with no established therapies or management guidelines. The following 25 genes were recommended by 85% or more of the experts: OTC, G6PC, SLC37A4, CYP11B1, ARSB, F8, F9, SLC2A1, CYP17A1, RB1, IDS, GUSB, DMD, GLUD1, CYP11A1, GALNS, CPS1, PLPBP, ALDH7A1, SLC26A3, SLC25A15, SMPD1, GATM, SLC7A7, and NAGS. Including these, 42 gene-disease pairs were endorsed by at least 80% of experts, and 432 genes were endorsed by at least 50% of experts. Conclusions and Relevance: In this survey study, rare disease experts broadly supported NBSeq for treatable conditions and demonstrated substantial concordance regarding the inclusion of a specific subset of genes in NBSeq.


Subject(s)
Chondroitinsulfatases , Rare Diseases , Male , Adult , Humans , Infant, Newborn , Female , Middle Aged , Aged , Aged, 80 and over , Rare Diseases/diagnosis , Rare Diseases/genetics , Neonatal Screening , Parents , Amino Acid Transport System y+L , Monosaccharide Transport Proteins , Antiporters
9.
Ophthalmol Retina ; 6(12): 1130-1144, 2022 12.
Article in English | MEDLINE | ID: mdl-35781068

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin (RS1), in individuals with retinal disease caused by mutations in the RS1 gene. DESIGN: Open-label, phase I/II dose-escalation clinical trial. SUBJECTS: Twenty-two adults and 5 children with X-linked retinoschisis (XLRS), aged 10 to 79 years, were enrolled. METHODS: The participants received an intravitreal (IVT) injection of rAAV2tYF-CB-hRS1, at 1 of 3 dose levels, in the poorer-seeing eye and were followed up for a minimum of 1 year after treatment. MAIN OUTCOME MEASURES: The primary safety measures were local (ocular) or systemic (nonocular) adverse events (AEs) during the 12-month period after study agent administration. Efficacy was assessed based on measures of best-corrected visual acuity (BCVA), schisis cavity volume, static perimetry visual field testing, and electroretinography (ERG). RESULTS: The IVT administration of rAAV2tYF-CB-hRS1 was generally safe at each of the dose levels. There were no AEs resulting in early termination, and no dose-limiting toxicities were reported. The most common ocular AEs observed were related to ocular inflammation (blurred vision, visual impairment, and the presence of vitreous cells, keratic precipitates, vitreous floaters, anterior chamber cells, and vitreous haze). Ocular inflammation was generally either mild or moderate in severity and responsive to standard immunosuppressive therapy, except in 3 participants (all in the highest-dose group) who developed chronic uveitis, which required prolonged therapy. Two patients experienced retinal detachments. There was no overall improvement in BCVA, visual fields, or ERG in the study eye compared with that in the fellow eye for any dose group. Variable changes in the cystic cavity volume over time were similar in the study and fellow eyes. CONCLUSIONS: Gene augmentation therapy with rAAV2tYF-CB-hRS1 for XLRS was generally safe and well tolerated but failed to demonstrate a measurable treatment effect. The clinical trial is ongoing through 5 years of follow-up to assess its long-term safety.


Subject(s)
Retinoschisis , Adult , Child , Humans , Dependovirus/genetics , Eye Proteins/genetics , Genetic Vectors , Inflammation , Intravitreal Injections , Retina , Retinoschisis/diagnosis , Retinoschisis/genetics , Retinoschisis/therapy
10.
Ophthalmology ; 129(10): 1177-1191, 2022 10.
Article in English | MEDLINE | ID: mdl-35714735

ABSTRACT

PURPOSE: To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human choroideremia (CHM)-encoding cDNA in CHM. DESIGN: Prospective, open-label, nonrandomized, dose-escalation, phase I/II clinical trial. PARTICIPANTS: Fifteen CHM patients (ages 20-57 years at dosing). METHODS: Patients received uniocular subfoveal injections of low-dose (up to 5 × 1010 vector genome [vg] per eye, n = 5) or high-dose (up to 1 × 1011 vg per eye, n = 10) of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA (AAV2-hCHM). Patients were evaluated preoperatively and postoperatively for 2 years with ophthalmic examinations, multimodal retinal imaging, and psychophysical testing. MAIN OUTCOME MEASURES: Visual acuity, perimetry (10-2 protocol), spectral-domain OCT (SD-OCT), and short-wavelength fundus autofluorescence (SW-FAF). RESULTS: We detected no vector-related or systemic toxicities. Visual acuity returned to within 15 letters of baseline in all but 2 patients (1 developed acute foveal thinning, and 1 developed a macular hole); the rest showed no gross changes in foveal structure at 2 years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry or in the lateral extent of retinal pigment epithelium relative preservation by SD-OCT and SW-FAF. Microperimetry showed nonsignificant (< 3 standard deviations of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS: Visual acuity was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13 of 15 patients. Acute foveal thinning with unchanged perifoveal function in 1 patient and macular hole in 1 patient suggest foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.


Subject(s)
Choroideremia , Retinal Perforations , Adult , Choroideremia/diagnosis , Choroideremia/genetics , Choroideremia/therapy , DNA, Complementary , Dependovirus/genetics , Fluorescein Angiography , Genetic Therapy/methods , Humans , Middle Aged , Prospective Studies , Retinal Perforations/therapy , Serogroup , Tomography, Optical Coherence , Young Adult
11.
Ophthalmic Surg Lasers Imaging Retina ; 53(4): 182-184, 2022 04.
Article in English | MEDLINE | ID: mdl-35417295

ABSTRACT

Rhegmatogenous retinal detachment in choroideremia is a rare occurrence. The authors present a case of a 23-year-old man with choroideremia with a near-total rhegmatogenous retinal detachment. Fundus examination did not reveal any retinal breaks, but extensive preoperative optical coherence tomography detected a small posterior hole along the superior arcades. The retinal detachment was successfully managed with vitrectomy, perfluorooctane to confirm the absence of any peripheral breaks, endolaser, and 20% sulfur hexafluoride gas. Similar extramacular holes were found in the patient's other eye. Patients with choroideremia may develop posterior retinal breaks leading to retinal detachment.


Subject(s)
Choroideremia , Retinal Detachment , Retinal Perforations , Adult , Choroideremia/complications , Choroideremia/diagnosis , Humans , Male , Retinal Detachment/diagnosis , Retinal Detachment/etiology , Retinal Detachment/surgery , Retinal Perforations/diagnosis , Retinal Perforations/etiology , Retinal Perforations/surgery , Retrospective Studies , Tomography, Optical Coherence , Vitrectomy , Young Adult
13.
Ophthalmic Genet ; 43(3): 332-339, 2022 06.
Article in English | MEDLINE | ID: mdl-35057699

ABSTRACT

BACKGROUND: Variants in RCBTB1 were recently described to cause a retinal dystrophy with only eight families described to date and a predominant phenotype of macular atrophy and peripheral reticular degeneration. Here, we further evaluate the genotypic and phenotypic characteristics of biallelic RCBTB1-associated retinal dystrophy in a North American clinic population. METHODS: A retrospective analysis of genetic and clinical features was performed in individuals with biallelic variants in RCBTB1. RESULTS: Three unrelated individuals of French-Canadian descent with rare biallelic RCBTB1 variants were identified. All individuals shared a novel p.(Ser342Leu) missense variant; one patient was homozygous whereas the other two each possessed a second unique novel variant p.(Gln120*) and p.(Pro224Leu). All three had macula-predominant disease with symptom onset in the fifth decade of life. CONCLUSION: This report adds to the genetic diversity of RCBTB1-associated disease. These cases confirm the later-onset, relative to many other retinal dystrophies, and macular focus of disease described in most cases to-date. They are thus a reminder of considering hereditary disease in the differential for later-onset macular atrophy.


Subject(s)
Macular Degeneration , Retinal Dystrophies , Atrophy , Canada/ethnology , Guanine Nucleotide Exchange Factors/genetics , Humans , Macular Degeneration/genetics , Pedigree , Phenotype , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retrospective Studies
14.
Genes (Basel) ; 12(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34946802

ABSTRACT

Sector and pericentral are two rare, regional forms of retinitis pigmentosa (RP). While usually defined as stable or only very slowly progressing, the available literature to support this claim is limited. Additionally, few studies have analyzed the spectrum of disease within a particular genotype. We identified all cases (9 patients) with an autosomal dominant Rhodopsin variant previously associated with sector RP (RHO c.316G > A, p.Gly106Arg) at our institution. Clinical histories were reviewed, and testing included visual fields, multimodal imaging, and electroretinography. Patients demonstrated a broad phenotypic spectrum that spanned regional phenotypes from sector-like to pericentral RP, as well as generalized disease. We also present evidence of significant intrafamilial variability in regional phenotypes. Finally, we present the longest-reported follow-up for a patient with RHO-associated sector-like RP, showing progression from sectoral to pericentral disease over three decades. In the absence of comorbid macular disease, the long-term prognosis for central visual acuity is good. However, we found that significant progression of RHO p.Gly106Arg disease can occur over protracted periods, with impact on peripheral vision. Longitudinal widefield imaging and periodic ERG reassessment are likely to aid in monitoring disease progression.


Subject(s)
Codon/genetics , Genes, Dominant/genetics , Mutation/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Adolescent , Adult , Female , Fundus Oculi , Humans , Male , Middle Aged , Phenotype , Visual Acuity/genetics , Visual Field Tests/methods , Visual Fields/genetics
15.
J Vitreoretin Dis ; 5(2): 147-156, 2021.
Article in English | MEDLINE | ID: mdl-37009079

ABSTRACT

Purpose: This report illustrates that peripheral vascular leakage on ultra-widefield fluorescein angiography (FA) can occur in patients with inherited retinal degeneration (IRD) without evidence of a separate cause of leakage. Methods: We searched the electronic medical records of the Massachusetts Eye and Ear Infirmary from 2010 to 2019 for patients with an IRD diagnosis and examination with an ultra-widefield FA. Images from FAs were evaluated in masked fashion by 2 retina specialists. Documentation of an evaluation for alternative causes of vascular leakage was recorded, as well as results from electroretinography, Goldmann perimetry, and genetic testing. Results: A total of 305 patients with an IRD diagnosis and FA procedure code were identified. Of these, 26 patients had both a clinical diagnosis of IRD and ultra-widefield FA on detailed medical-record review. Three patients had FA to evaluate a Coats-like response and were excluded. Of the remaining 23, 4 patients (17%) had significant peripheral leakage on FA. Of these, 1 had pericentral retinitis pigmentosa (for which the genetic cause of disease was undefined), 1 had Refsum disease with confirmed biallelic PHYH mutations, 1 had a CRB1-associated macular dystrophy, and 1 had CERKL-associated macular dystrophy. There was no evidence of ocular inflammation from history, examination, or laboratory testing to account for the FA findings. Of the 19 patients without significant leakage, 4 had minimal leakage and 15 had no peripheral leakage. Conclusions: Peripheral retinal vascular leakage can be seen on ultra-widefield FA in patients with IRD that is likely due to the IRD disease process itself rather than to an additional, distinct eye condition.

17.
Mol Vis ; 26: 423-433, 2020.
Article in English | MEDLINE | ID: mdl-32565670

ABSTRACT

Purpose: To evaluate the phenotypic spectrum of autosomal recessive RP1-associated retinal dystrophies and assess genotypic associations. Methods: A retrospective multicenter study was performed of patients with biallelic RP1-associated retinal dystrophies. Data including presenting symptoms and age, visual acuity, kinetic perimetry, full field electroretinogram, fundus examination, multimodal retinal imaging, and RP1 genotype were evaluated. Results: Nineteen eligible patients from 17 families were identified and ranged in age from 10 to 56 years at the most recent evaluation. Ten of the 21 unique RP1 variants identified were novel, and mutations within exon 2 accounted for nearly half of alleles across the cohort. Patients had clinical diagnoses of retinitis pigmentosa (13), cone-rod dystrophy (3), Leber congenital amaurosis (1), early-onset severe retinal dystrophy (1), and macular dystrophy (1). Macular atrophy was a common feature across the cohort. Symptom onset occurred between 4 and 30 years of age (mean 14.9 years, median 13 years), but there were clusters of onset age that correlated with the effects of RP1 mutations at a protein level. Patients with later-onset disease, including retinitis pigmentosa, had at least one missense variant in an exon 2 DCX domain. Conclusions: Biallelic RP1 mutations cause a broad spectrum of retinal disease. Exon 2 missense mutations are a significant contributor to disease and can be associated with a considerably later onset of retinitis pigmentosa than that typically associated with biallelic RP1 mutations.


Subject(s)
Microtubule-Associated Proteins/genetics , Retinal Dystrophies/genetics , Adolescent , Adult , Alleles , Child , Cohort Studies , Cone-Rod Dystrophies/genetics , DNA Mutational Analysis , Electroretinography , Eye Diseases, Hereditary/genetics , Female , Genotype , Humans , Leber Congenital Amaurosis/genetics , Macular Degeneration/genetics , Male , Middle Aged , Mutation , Mutation, Missense , Phenotype , Retinal Dystrophies/diagnostic imaging , Retinal Dystrophies/physiopathology , Retinitis Pigmentosa/genetics , Retrospective Studies , Visual Acuity
18.
Genet Med ; 22(6): 1079-1087, 2020 06.
Article in English | MEDLINE | ID: mdl-32037395

ABSTRACT

PURPOSE: Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases. METHODS: Five hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR). RESULTS: Likely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene. CONCLUSION: CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.


Subject(s)
Retinal Degeneration , DNA Copy Number Variations/genetics , Eye Proteins/genetics , Genes, Recessive , High-Throughput Nucleotide Sequencing , Humans , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Virulence
19.
Nat Biomed Eng ; 4(1): 97-110, 2020 01.
Article in English | MEDLINE | ID: mdl-31937940

ABSTRACT

The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.


Subject(s)
Adenine/metabolism , Cytosine/metabolism , Dependovirus/physiology , Gene Editing/methods , Animals , Brain/metabolism , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Liver/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardium/metabolism , Retina/metabolism
20.
Semin Ophthalmol ; 34(4): 287-292, 2019.
Article in English | MEDLINE | ID: mdl-31188052

ABSTRACT

Stem cells provide a promising new therapeutic approach for the treatment of multiple acquired and inherited retinal conditions. While to date, there have been numerous clinical trials examining the ability of stem cells to treat the geographic atrophy found in advanced non-neovascular age-related macular degeneration, fewer clinical trials have specifically examined stem-cell therapy for inherited retinal disease. Moreover, it remains to be seen if human stem cells will be able to regenerate the lost retinal cell populations that represent a final common pathway for most of the inherited retinal diseases, or if stem cells will secrete a neuroprotective paracrine factor that will delay progression of these diseases. Here, we will review a number of the current clinical trials, either completed or in process, that have been designed to specifically treat inherited retinal conditions. There was considerable initial concern that using human stem cells as therapeutic agents might have the potential to form benign tumors or trigger an immune response that would have deleterious effects on the patient's retina. Currently, the majority of the clinical trials reviewed share the conclusion that intraocular stem-cell approach is generally well tolerated and safe for patients. While there are some efficacy data that have been published for a few of the reviewed trials, none of the completed studies have been empowered to demonstrate statistically significant efficacy in humans.


Subject(s)
Retinal Degeneration/therapy , Stem Cell Transplantation/methods , Clinical Trials as Topic , Embryonic Stem Cells/transplantation , Humans , Induced Pluripotent Stem Cells/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...