Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Pharmacol Transl Sci ; 7(5): 1474-1484, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751645

ABSTRACT

Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.

2.
Cell Mol Life Sci ; 79(11): 571, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306014

ABSTRACT

In INF2-a formin linked to inherited renal and neurological disease in humans-the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.


Subject(s)
Actins , Microfilament Proteins , Humans , Formins , Actins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Protein Binding
3.
Front Immunol ; 13: 890836, 2022.
Article in English | MEDLINE | ID: mdl-35747143

ABSTRACT

Background: Colorectal cancer (CRC) is a heterogeneous disease with variable mutational profile and tumour microenvironment composition that influence tumour progression and response to treatment. While chemoresistant and poorly immunogenic CRC remains a challenge, the development of new strategies guided by biomarkers could help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative against chemoresistant and poorly immunogenic CRC. Methods: NK cell-related immunological markers were analysed by transcriptomics and immunohistochemistry in human CRC samples and correlated with tumour progression and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a protocol combining cytokines and feeder cells was analysed in vitro and in vivo and correlated with CRC mutational status and the expression of ligands for immune checkpoint (IC) receptors regulating NK cell activity. Results: HLA-I downmodulation and NK cell infiltration correlated with better overall survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC, suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo experiments confirmed the efficacy of the therapy against both HLA+ and HLA- CRC cell lines. Concomitant administration of pembrolizumab failed to improve tumour control. Conclusions: Our results reveal an immunological profile of CRC tumours in which immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation) favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown that allogeneic NK cell therapy can target tumours expressing mutations conferring poor prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this study provides a rationale for a new potential basis for CRC stratification and NK cell-based therapy.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Colorectal Neoplasms/pathology , Humans , Immunotherapy/methods , Killer Cells, Natural , Ligands , Tumor Microenvironment
4.
Theranostics ; 11(8): 3781-3795, 2021.
Article in English | MEDLINE | ID: mdl-33664861

ABSTRACT

Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.


Subject(s)
Granzymes/antagonists & inhibitors , Peritonitis/drug therapy , Peritonitis/enzymology , Sepsis/drug therapy , Sepsis/enzymology , Aged , Aged, 80 and over , Animals , Cytokines/blood , Disease Models, Animal , Female , Granzymes/blood , Granzymes/deficiency , Granzymes/genetics , Humans , Inflammation Mediators/blood , Interleukin-6/biosynthesis , Killer Cells, Natural/enzymology , Macrophages/enzymology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Molecular Targeted Therapy , Peritonitis/etiology , Precision Medicine , Sepsis/etiology , Serpins/pharmacology , Toll-Like Receptor 4/metabolism
5.
Toxins (Basel) ; 13(2)2021 01 23.
Article in English | MEDLINE | ID: mdl-33498622

ABSTRACT

Multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired and community infections and pose a challenge to the human health care system. Therefore, it is important to find new drugs that show activity against these bacteria, both in monotherapy and in combination with other antimicrobial drugs. Gliotoxin (GT) is a mycotoxin produced by Aspergillus fumigatus and other fungi of the Aspergillus genus. Some evidence suggests that GT shows antimicrobial activity against S. aureus in vitro, albeit its efficacy against multidrug-resistant strains such asMRSA or vancomycin-intermediate S. aureus (VISA) strainsis not known. This work aimedto evaluate the antibiotic efficacy of GT as monotherapy or in combination with other therapeutics against MRSA in vitro and in vivo using a Caenorhabditis elegans infection model.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gliotoxin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Vancomycin/pharmacology , Animals , Caenorhabditis elegans , Disease Models, Animal , Disk Diffusion Antimicrobial Tests , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus/growth & development , Staphylococcal Infections/microbiology
6.
Cell Rep ; 32(1): 107847, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640217

ABSTRACT

If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.


Subject(s)
Carcinogenesis/pathology , Colon/pathology , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Extracellular Space/enzymology , Granzymes/metabolism , Inflammation/pathology , Acute Disease , Animals , Azoxymethane , Carcinogenesis/genetics , Chronic Disease , Colorectal Neoplasms/genetics , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dextran Sulfate , Disease Progression , Granzymes/antagonists & inhibitors , Granzymes/genetics , Humans , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Interleukin-6/biosynthesis , Mice, Knockout , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Materials (Basel) ; 12(7)2019 04 02.
Article in English | MEDLINE | ID: mdl-30987007

ABSTRACT

Gliotoxin (GT), a secondary metabolite produced by Aspergillus molds, has been proposed as a potential anti-tumor agent. Here we have developed a nanoparticle approach to enhance delivery of GT in tumor cells and establish a basis for its potential use as therapeutical drug. GT bound to magnetic nanoparticles (MNPs) retained a high anti-tumor activity, correlating with efficient intracellular delivery, which was increased in the presence of glucose. Our results show that the attachment of GT to MNPs by covalent bonding enhances intracellular GT delivery without affecting its biological activity. This finding represents the first step to use this potent anti-tumor agent in the treatment of cancer.

8.
Front Immunol ; 9: 2549, 2018.
Article in English | MEDLINE | ID: mdl-30459771

ABSTRACT

Pulmonary aspergillosis is a severe infectious disease caused by some members of the Aspergillus genus, that affects immunocompetent as well as immunocompromised patients. Among the different disease forms, Invasive Aspergillosis is the one causing the highest mortality, mainly, although not exclusively, affecting neutropenic patients. This genus is very well known by humans, since different sectors like pharmaceutical or food industry have taken advantage of the biological activity of some molecules synthetized by the fungus, known as secondary metabolites, including statins, antibiotics, fermentative compounds or colorants among others. However, during infection, in response to a hostile host environment, the fungal secondary metabolism is activated, producing different virulence factors to increase its survival chances. Some of these factors also contribute to fungal dissemination and invasion of adjacent and distant organs. Among the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the best known and better characterized virulence factor. It is able to generate reactive oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly give an overview of the lung immune response against Aspergillus as a preface to analyse the effect of different secondary metabolites on the host immune response, with a special attention to GT. We will discuss the results reported in the literature on the context of the animal models employed to analyse the role of GT as virulence factor, which is expected to greatly depend on the immune status of the host: why should you hide when nobody is seeking for you? Finally, GT immunosuppressive activity will be related with different human diseases predisposing to invasive aspergillosis in order to have a global view on the potential of GT to be used as a target to treat IA.


Subject(s)
Antigens, Fungal/metabolism , Aspergillus/physiology , Gliotoxin/metabolism , Immunosuppressive Agents/metabolism , Lung/immunology , Pulmonary Aspergillosis/immunology , Virulence Factors/metabolism , Animals , Aspergillus/pathogenicity , Humans , Models, Animal , Molecular Targeted Therapy , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
9.
Front Immunol ; 8: 1817, 2017.
Article in English | MEDLINE | ID: mdl-29312326

ABSTRACT

The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

10.
Arthritis Rheumatol ; 69(2): 320-334, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27598995

ABSTRACT

OBJECTIVE: Granzyme A (GzmA) levels are elevated in the plasma and synovium of patients with rheumatoid arthritis (RA), suggesting involvement of this protease in the pathogenesis of the disease. GzmA contributes to sepsis by regulating the production of proinflammatory cytokines. The purpose of this study was to evaluate the contribution of GzmA to the pathogenesis of RA in vivo and to examine the possibility that GzmA acting via tumor necrosis factor (TNF) stimulates osteoclastogenesis. METHODS: Inflammatory arthritis induced by type II collagen was evaluated in wild-type, GzmA-deficient, and perforin-deficient mice. The osteoclastogenic potential of GzmA was examined in vitro using bone marrow cells and colony-forming unit-granulocyte-macrophage (CFU-GM) cells and in vivo using GzmA-deficient mice. RESULTS: Gene deletion of GzmA attenuated collagen-induced arthritis, including serum levels of proinflammatory cytokines, joint damage, and bone erosion in affected mice, suggesting that osteoclast activity is reduced in the absence of GzmA. Accordingly, GzmA-treated bone marrow cells produced multinucleated cells that fulfilled the criteria for mature osteoclasts: tartrate-resistant acid phosphatase (TRAP) activity, ß integrin expression, calcitonin receptor expression, and resorptive activity on dentin slices. GzmA appeared to act without accessory cells, and its activity was not affected by osteoprotegerin, suggesting a minor contribution of RANKL. It also induced the expression and secretion of TNF. Neutralization of TNF or stimulation of CFU-GM cells from TNF-/- mice prevented GzmA-induced osteoclastogenesis. GzmA-deficient mice had reduced osteoclastogenesis in vivo (fewer calcitonin receptor-positive multinucleated cells and fewer transcripts for cathepsin K, matrix metalloproteinase 9, and TRAP in joints) and reduced serum levels of C-terminal telopeptide of type I collagen. CONCLUSION: GzmA contributes to the joint destruction of RA partly by promoting osteoclast differentiation.


Subject(s)
Arthritis, Experimental/enzymology , Arthritis, Experimental/etiology , Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/etiology , Granzymes/physiology , Osteogenesis/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Female , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...