Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Clin Pharmacol Ther ; 112(5): 1040-1050, 2022 11.
Article in English | MEDLINE | ID: mdl-35776072

ABSTRACT

Asciminib (Scemblix) is a first-in-class BCR::ABL1 inhibitor that works by specifically targeting the ABL myristoyl pocket (STAMP) and has potent activity against the T315I mutation. This study aimed to characterize the effect of asciminib exposure on disease progression and to elucidate factors influencing efficacy. Our analysis included 303 patients with chronic myeloid leukemia in chronic phase recruited in a phase I study with dose ranging from 10 to 200 mg twice a day (b.i.d.) or 40 to 200 mg once a day (q.d.) (NCT02081378) and in the phase III ASCEMBL (Study of Efficacy of CML-CP Patients Treated With ABL001 Versus Bosutinib, Previously Treated With 2 or More TKIs) study receiving asciminib 40 mg b.i.d. (NCT03106779). A total of 67 patients harbored the T315I mutation. A longitudinal pharmacokinetic/pharmacodynamic model was developed to characterize the exposure-efficacy relationship, in which the efficacy was assessed through BCR::ABL1 transcript levels over time. Specifically, a three-compartment model representing quiescent leukemic stem cells, proliferating bone marrow cells, and resistant cells was developed. Drug killing of the proliferating cells by asciminib was characterized by a power model. A subgroup analysis was performed on the patients with the T315I mutation using a maximum drug effect model to characterize the drug effect. The model demonstrated the appropriateness of a total daily dose of asciminib 80 mg in patients without the T315I mutation and 200 mg b.i.d. in patients with the T315I mutation with further validation in light of safety data. This model captured key characteristics of patients' response to asciminib and helped inform dosing rationale for resistant and difficult-to-treat populations.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Philadelphia Chromosome , Humans , Drug Resistance, Neoplasm/genetics , Mutation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/pharmacology
3.
Clin Pharmacokinet ; 61(10): 1393-1403, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35764773

ABSTRACT

BACKGROUND: Asciminib, a first-in-class, highly potent and specific ABL/BCR-ABL1 inhibitor, has shown superior efficacy compared to bosutinib in patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase, treated with two or more tyrosine kinase inhibitors. This study aimed to describe pharmacokinetic (PK) properties of asciminib and to identify clinically relevant covariates impacting its exposure. METHODS: A population PK (PopPK) model was developed using a two-compartment model with delayed first-order absorption and elimination. The analysis included PK data from two clinical studies (Phases 1 and 3) involving 353 patients, with total daily dose of asciminib in the range of 20-400 mg. RESULTS: The nominal total daily dose was incorporated as a structural covariate on clearance (CL), and body weight (BW) was included as a structural covariate via allometric scaling on CL and central volume. Renal function and formulation were included as statistically significant covariates on CL and absorption (ka), respectively. The simulation results revealed a modest but clinically non-significant effect of baseline BW and renal function on ka. Correlations between covariates, such as baseline demographics and disease characteristics, heavy smoking status, hepatic function, and T315I mutation status, were not statistically significant with respect to CL, and they were not incorporated in the final model. Additionally, the final model-based simulations demonstrated comparable exposure and CL for asciminib 40 mg twice daily and 80 mg once daily (an alternative regimen not studied in the Phase 3 trial), as well as similar PK properties in patients with and without the T315I mutation. CONCLUSIONS: The final PopPK model adequately characterized the PK properties of asciminib and assessed the impact of key covariates on its exposure. The model corroborates the use of the approved asciminib dose of 80 mg total daily dose as 40 mg twice daily, and supports the use of 80 mg once daily as an alternative dose regimen to facilitate patient's compliance. TRIAL REGISTRATION NUMBER [DATE OF REGISTRATION]: First-in-human (CABL001X2101, Phase 1), ClinicalTrials.gov identifier: NCT02081378 [28 February 2014]; ASCEMBL (CABL001A2301, Phase 3), ClinicalTrials.gov identifier: NCT03106779 [10 April 2017].


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/therapeutic use , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Niacinamide/analogs & derivatives , Philadelphia Chromosome , Protein Kinase Inhibitors/therapeutic use , Pyrazoles
4.
CPT Pharmacometrics Syst Pharmacol ; 9(4): 230-237, 2020 04.
Article in English | MEDLINE | ID: mdl-32150661

ABSTRACT

Everolimus is currently approved in Europe as an adjunctive therapy for patients aged ≥ 2 years with tuberous sclerosis complex (TSC)-associated treatment-refractory partial-onset seizures, based on the EXIST-3 study (NCT01713946) results. As TSC-associated seizures can also affect children aged between 6 months and 2 years, a modeling and simulation (M&S) approach was undertaken to extrapolate exposure (trough plasma concentration (Cmin )) after a dose of 6 mg/m2 and reduction in seizure frequency (RSF). A physiologically based pharmacokinetic model using Simcyp was developed to predict Cmin in adult and pediatric patients, which was then used by a population pharmacodynamic model and a linear mixed effect model to predict short-term and long-term efficacy in adults (for validation) and in children, respectively. Based on the results of the M&S study, everolimus at the dose of 6 mg/m2 is anticipated to be an efficacious treatment in children 6 months to 2 years of age (up to 77.8% RSF) with concentrations within the recommended target range.


Subject(s)
Everolimus/administration & dosage , Models, Biological , Seizures/drug therapy , Tuberous Sclerosis/drug therapy , Adult , Age Factors , Child, Preschool , Computer Simulation , Dose-Response Relationship, Drug , Drug Development/methods , Everolimus/pharmacokinetics , Humans , Infant , Seizures/etiology , Time Factors , Tuberous Sclerosis/complications
5.
J Pharm Sci ; 108(6): 2191-2198, 2019 06.
Article in English | MEDLINE | ID: mdl-30721710

ABSTRACT

In adult patients, nilotinib is indicated for chronic myeloid leukemia at an approved oral dose of 300 or 400 mg BID. Physiologically based pharmacokinetic (PBPK) model was developed to describe and supplement limited PK data in the pediatric population ranging from 2 to less than 6 years of age and ultimately inform dosing regimen. An adult Simcyp PBPK model was established and verified with clinical pharmacokinetic data after a single or multiple oral doses of 400 mg nilotinib (230 mg/m2). The model was then applied to a pediatric PBPK model, taking account of ontogeny profiles of metabolizing enzymes and pediatric physiological parameters. The model was further verified using observed pediatric PK data in 12- to <18-year-old and from 6- to <12-year-old patients. The PBPK models were able to recover, describe, and supplement the limited nilotinib concentration-time data profile in 2- to <6-year-old patients after a single dose and Cmin,ss after BID dosing. The exposure (Cmax,ss, Cmin,ss, and AUCtau,ss) was predicted to be similar across age groups. PBPK model simulations confirmed that body surface area-normalized dosing regimen of 230 mg/m2 is considered appropriate for pediatric patients >2 to <18 years of age.


Subject(s)
Drug Dosage Calculations , Models, Biological , Pyrimidines/pharmacokinetics , Administration, Oral , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Body Surface Area , Child , Child, Preschool , Clinical Trials as Topic , Computer Simulation , Dose-Response Relationship, Drug , Drug Administration Schedule , Glycosides , Healthy Volunteers , Humans , Middle Aged , Phenols , Pyrimidines/administration & dosage , Research Design , Young Adult
6.
J Pharmacokinet Pharmacodyn ; 45(5): 707-719, 2018 10.
Article in English | MEDLINE | ID: mdl-29992479

ABSTRACT

Everolimus is approved in Europe and in the USA for the adjunctive treatment of patients aged 2 years and older whose refractory partial-onset seizures, with or without secondary generalization, are associated with tuberous sclerosis complex. The objective of this analysis was to establish a population pharmacokinetic (PK)/pharmacodynamic model describing the relationship between seizure frequency and everolimus exposure to confirm the recommended target concentration range of 5-15 ng/mL. The PK model was a two-compartment model with first order absorption and clearance. CYP3A and P-gp inducers and body-surface area were shown to impact everolimus exposure, justifying dose adjustments. A Poisson distribution was found to adequately describe the random nature of daily seizure counts during the screening phase. A placebo effect on the Poisson seizure mean was implemented as an asymptotic exponential function of time leading to a new steady-state seizure mean. The everolimus effect was implemented as an inhibitory Emax function of Cmin on the seizure mean, where Emax exhibited an asymptotic exponential increase over time to a higher steady-state value. Increasing age was found to decrease the baseline seizure mean and to prolong the half-life of the increase in Emax. The dependence of seizure frequencies on Cmin was explored by simulation. The responder rate increased with increasing Cmin. As Cmin decreased below 5 ng/mL, variability in response became larger and responder rates decreased more rapidly. The results supported the recommended target concentration range for everolimus of 5-15 ng/mL to ensure treatment efficacy.


Subject(s)
Anticonvulsants/administration & dosage , Anticonvulsants/pharmacokinetics , Everolimus/administration & dosage , Everolimus/pharmacokinetics , Seizures/drug therapy , Tuberous Sclerosis/drug therapy , Administration, Oral , Adolescent , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Male , Treatment Outcome
7.
Pharm Res ; 30(9): 2355-67, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23743656

ABSTRACT

PURPOSE: When information is sparse, individual parameters derived from a non-linear mixed effects model analysis can shrink to the mean. The objective of this work was to predict individual parameter shrinkage from the Bayesian information matrix (M BF ). We 1) Propose and evaluate an approximation of M BF by First-Order linearization (FO), 2) Explore by simulations the relationship between shrinkage and precision of estimates and 3) Evaluate prediction of shrinkage and individual parameter precision. METHODS: We approximated M BF using FO. From the shrinkage formula in linear mixed effects models, we derived the predicted shrinkage from M BF . Shrinkage values were generated for parameters of two pharmacokinetic models by varying the structure and the magnitude of the random effect and residual error models as well as the design. We then evaluated the approximation of M BF FO and compared it to Monte-Carlo (MC) simulations. We finally compared expected and observed shrinkage as well as the predicted and estimated Standard Errors (SE) of individual parameters. RESULTS: M BF FO was similar to M BF MC. Predicted and observed shrinkages were close . Predicted and estimated SE were similar. CONCLUSIONS: M BF FO enables prediction of shrinkage and SE of individual parameters. It can be used for design optimization.


Subject(s)
Nonlinear Dynamics , Pharmacokinetics , Bayes Theorem , Models, Statistical , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...