Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(6): pgae229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933930

ABSTRACT

The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.

2.
Biol Cell ; 115(4): e2200111, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36751133

ABSTRACT

Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Humans , Endoplasmic Reticulum Stress/physiology , Signal Transduction , Gene Expression , Endoplasmic Reticulum/metabolism
3.
Bioact Mater ; 18: 368-382, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35415309

ABSTRACT

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

4.
Genes (Basel) ; 12(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499031

ABSTRACT

Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.


Subject(s)
Calcium/metabolism , Disease Susceptibility , Neoplasms/etiology , Neoplasms/metabolism , Receptors, sigma/metabolism , Animals , Calcium Signaling , Endoplasmic Reticulum/metabolism , Homeostasis , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Neoplasms/therapy , Signal Transduction , Sigma-1 Receptor
5.
Cancers (Basel) ; 12(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784704

ABSTRACT

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.

6.
Sci Rep ; 10(1): 3924, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127570

ABSTRACT

Mitochondria play an essential role in bioenergetics and cellular Ca[Formula: see text] handling. The mitochondrial permeability transition pore (mPTP) is a non-specific channel located in the inner mitochondrial membrane. Long-lasting openings of the pore allow the rapid passage of ions and large molecules, which can result in cell death. The mPTP also exhibits transient, low conductance openings that contribute to Ca[Formula: see text] homeostasis. Although many regulators of the pore have been identified, none of them uniquely governs the passage between the two operating modes, which thus probably relies on a still unidentified network of interactions. By developing a core computational model for mPTP opening under the control of mitochondrial voltage and Ca[Formula: see text], we uncovered the existence of a positive feedback loop leading to bistability. The characteristics of the two stable steady-states correspond to those of the two opening states. When inserted in a full model of Ca[Formula: see text] handling by mitochondria, our description of the pore reproduces observations in mitochondrial suspensions. Moreover, the model predicted the occurrence of hysteresis in the switching between the two modes, upon addition and removal of free Ca[Formula: see text] in the extra-mitochondrial medium. Stochastic simulations then confirmed that the pore can undergo transient openings resembling those observed in intact cells.


Subject(s)
Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Models, Biological , Calcium/metabolism , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Protein Conformation
7.
FEBS J ; 287(1): 27-42, 2020 01.
Article in English | MEDLINE | ID: mdl-31647176

ABSTRACT

The endoplasmic reticulum (ER) is a multifunctional organelle that constitutes the entry into the secretory pathway. The ER contributes to the maintenance of cellular calcium homeostasis, lipid synthesis and productive secretory, and transmembrane protein folding. Physiological, chemical, and pathological factors that compromise ER homeostasis lead to endoplasmic reticulum stress (ER stress). To cope with this situation, cells activate an adaptive signaling pathway termed the unfolded protein response (UPR) that aims at restoring ER homeostasis. The UPR is transduced through post-translational, translational, post-transcriptional, and transcriptional mechanisms initiated by three ER-resident sensors, inositol-requiring protein 1α, activating transcription factor 6α, and PRKR-like endoplasmic reticulum kinase. Determining the in and out of ER homeostasis control and UPR activation still represents a challenge for the community. Hence, standardized criteria and methodologies need to be proposed for monitoring ER homeostasis and ER stress in different model systems. Here, we summarize the pathways that are activated during ER stress and provide approaches aimed at assess ER homeostasis and stress in vitro and in vivo mammalian systems that can be used by researchers to plan and interpret experiments. We recommend the use of multiple assays to verify ER stress because no individual assay is guaranteed to be the most appropriate one.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Homeostasis , Unfolded Protein Response , Animals , Humans , Signal Transduction
8.
Article in English | MEDLINE | ID: mdl-31110132

ABSTRACT

Intracellular Ca2+ signals are well organized in all cell types, and trigger a variety of vital physiological processes. The temporal and spatial characteristics of cytosolic Ca2+ increases are mainly governed by the fluxes of this ion across the membrane of the endoplasmic/sarcoplasmic reticulum and the plasma membrane. However, various Ca2+ transporters also allow for Ca2+ exchanges between the cytoplasm and mitochondria. Increases in mitochondrial Ca2+ stimulate the production of ATP, which allows the cells to cope with the increased energy demand created by the stimulus. Less widely appreciated is the fact that Ca2+ handling by mitochondria also shapes cytosolic Ca2+ signals. Indeed, the frequency, amplitude, and duration of cytosolic Ca2+ increases can be altered by modifying the rates of Ca2+ transport into, or from, mitochondria. In this review, we focus on the interplay between mitochondria and Ca2+ signaling, highlighting not only the consequences of cytosolic Ca2+ changes on mitochondrial Ca2+, but also how cytosolic Ca2+ dynamics is controlled by modifications of the Ca2+-handling properties and the metabolism of mitochondria.


Subject(s)
Calcium Signaling , Cytoplasm/metabolism , Mitochondria/metabolism , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism
9.
Semin Cell Dev Biol ; 94: 11-19, 2019 10.
Article in English | MEDLINE | ID: mdl-30659886

ABSTRACT

About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.


Subject(s)
Calcium Signaling , Calcium/metabolism , Animals , Humans
10.
J Vis Exp ; (135)2018 05 24.
Article in English | MEDLINE | ID: mdl-29889185

ABSTRACT

Ca2+ is a ubiquitous ion involved in all known cellular processes. While global Ca2+ responses may affect cell fate, local variations in free Ca2+ cytosolic concentrations, linked to release from internal stores or an influx through plasma membrane channels, regulate cortical cell processes. Pathogens that adhere to or invade host cells trigger a reorganization of the actin cytoskeleton underlying the host plasma membrane, which likely affects both global and local Ca2+ signaling. Because these events may occur at low frequencies in a pseudo-stochastic manner over extended kinetics, the analysis of Ca2+ signals induced by pathogens raises major technical challenges that need to be addressed. Here, we report protocols for the detection of global and local Ca2+ signals upon a Shigella infection of epithelial cells. In these protocols, artefacts linked to a prolonged exposure and photodamage associated with the excitation of Ca2+ fluorescent probes are troubleshot by stringently controlling the acquisition parameters over defined time periods during a Shigella invasion. Procedures are implemented to rigorously analyze the amplitude and frequency of global cytosolic Ca2+ signals during extended infection kinetics using the chemical probe Fluo-4.


Subject(s)
Calcium/metabolism , Dysentery, Bacillary/diagnostic imaging , Epithelial Cells/metabolism , Animals , Dysentery, Bacillary/pathology , Epithelial Cells/pathology , Humans
11.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt B): 1838-1845, 2018 11.
Article in English | MEDLINE | ID: mdl-30992135

ABSTRACT

Recent reports have highlighted the pivotal role of Ca2+ during host cell infection by bacterial pathogens. Here, we review how bacterial pore-forming toxins (PFTs) trigger global Ca2+ signals to regulate cell adhesion-, inflammatory- or death processes. We comment recent reports describing the role of bacterial effectors injected by a type III secretion system (T3SS) as well as host cell players in the formation of Ca2+ microdomains during Shigella invasion and Chlamydia extrusion of host cells. We discuss how modeling and comparison between bacterial-induced and physiological Ca2+ microdomains provides insight into the critical parameters shaping the duration of local Ca2+ responses.


Subject(s)
Bacterial Infections/metabolism , Bacterial Physiological Phenomena , Calcium Signaling , Calcium/metabolism , Host-Pathogen Interactions , Membrane Microdomains/metabolism , Animals , Bacterial Infections/microbiology , Bacterial Secretion Systems , Biomarkers , Humans
12.
FEBS J ; 284(23): 4128-4142, 2017 12.
Article in English | MEDLINE | ID: mdl-29055103

ABSTRACT

Mitochondria play a significant role in shaping cytosolic Ca2+ signals. Thus, transfer of Ca2+ across the mitochondrial membrane is much studied, not only in intact cells but also in artificial systems such as mitochondrial suspensions or permeabilised cells. Observed rates of Ca2+ changes vary by at least one order of magnitude. In this work, we investigate the relationship between the Ca2+ dynamics observed in various experimental conditions using a computational model calibrated on experimental data. Results confirm that mitochondrial Ca2+ exchange fluxes through the mitochondrial Ca2+ uniporter (MCU) and the Na+ /Ca2+ exchanger obey the same basic kinetics in cells and in suspensions, and emphasise the important role played by the high Ca2+ levels reached in mitochondria-associated endoplasmic reticulum membranes in intact cells. Tissue specificity can be ascribed to the different modes of regulation of the MCU by Ca2+ , probably related to the specific levels of expression of the Ca2+ sensing regulator subunit of this channel. The model emphasises the importance of mitochondrial density and buffering in controlling the rate of Ca2+ exchanges with mitochondria, as verified experimentally. Finally, we show that heterogeneity between individual mitochondria can explain the large range of amplitudes and rates of rise in mitochondrial Ca2+ concentration that have been observed experimentally.


Subject(s)
Calcium/metabolism , Hepatocytes/metabolism , Mitochondria, Liver/metabolism , Myocytes, Cardiac/metabolism , Algorithms , Animals , Calcium Channels/metabolism , Cytosol/metabolism , Kinetics , Mice , Mitochondrial Membranes/metabolism , Models, Biological , Sodium-Calcium Exchanger/metabolism , Suspensions/metabolism
13.
EMBO J ; 36(17): 2567-2580, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28701483

ABSTRACT

The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.


Subject(s)
Bacterial Proteins/metabolism , Calcium/metabolism , Dysentery, Bacillary/metabolism , Host-Pathogen Interactions , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Shigella flexneri/physiology , Calpain/metabolism , Cell Adhesion , HeLa Cells , Humans , Signal Transduction
14.
J Physiol ; 595(10): 3143-3164, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28220501

ABSTRACT

KEY POINTS: Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP3 ) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca2+ ]i ) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca2+ -mobilizing hormones resulting in more sustained and prolonged [Ca2+ ]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP3 ) accumulation and phospholipase C (PLC) activity were significantly potentiated in hepatocytes from alcohol-fed rats compared to controls. Removal of extracellular calcium, or chelation of intracellular calcium did not normalize the differences in hormone-stimulated PLC activity, indicating calcium-dependent PLCs are not upregulated by alcohol. We propose that the liver 'adapts' to chronic alcohol exposure by increasing hormone-dependent IP3 formation, leading to aberrant calcium increases, which may contribute to hepatocyte injury.


Subject(s)
Alcohol Drinking/metabolism , Alcoholism/metabolism , Calcium Signaling , Hepatocytes/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Type C Phospholipases/metabolism , Animals , Calcium/metabolism , Hepatocytes/drug effects , Liver/drug effects , Liver/metabolism , Male , Rats, Sprague-Dawley , Vasopressins/pharmacology
15.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27630768

ABSTRACT

Ca (2+) oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca (2+) exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca (2+) changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca (2+) are controlled not only by the frequency of Ca (2+) oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca (2+) stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca (2+) oscillations. The main characteristics of the Ca (2+) exchange fluxes with these compartments are also reviewed.

16.
Sci Rep ; 6: 19316, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26776859

ABSTRACT

Oscillations of cytosolic Ca(2+) concentration are a widespread mode of signalling. Oscillatory spikes rely on repetitive exchanges of Ca(2+) between the endoplasmic reticulum (ER) and the cytosol, due to the regulation of inositol 1,4,5-trisphosphate receptors. Mitochondria also sequester and release Ca(2+), thus affecting Ca(2+) signalling. Mitochondrial Ca(2+) activates key enzymes involved in ATP synthesis. We propose a new integrative model for Ca(2+) signalling and mitochondrial metabolism in electrically non-excitable cells. The model accounts for (1) the phase relationship of the Ca(2+) changes in the cytosol, the ER and mitochondria, (2) the dynamics of mitochondrial metabolites in response to cytosolic Ca(2+) changes, and (3) the impacts of cytosol/mitochondria Ca(2+) exchanges and of mitochondrial metabolism on Ca(2+) oscillations. Simulations predict that as expected, oscillations are slowed down by decreasing the rate of Ca(2+) efflux from mitochondria, but also by decreasing the rate of Ca(2+) influx through the mitochondrial Ca(2+) uniporter (MCU). These predictions were experimentally validated by inhibiting MCU expression. Despite the highly non-linear character of Ca(2+) dynamics and mitochondrial metabolism, bioenergetics were found to be robust with respect to changes in frequency and amplitude of Ca(2+) oscillations.


Subject(s)
Calcium Signaling , Calcium/metabolism , Mitochondria/metabolism , Algorithms , Cell Line , Endoplasmic Reticulum/metabolism , Humans , Intracellular Membranes/metabolism , Models, Biological
17.
Integr Biol (Camb) ; 7(1): 90-100, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25383612

ABSTRACT

Paramecium cells swim and feed by beating their thousands of cilia in coordinated patterns. The organization of these patterns and its relationship with cell motility has been the subject of a large body of work, particularly as a model for ciliary beating in human organs where similar organization is seen. However the rapid motion of the cells makes quantitative measurements very challenging. Here we provide detailed measurements of the swimming of Paramecium cells from high-speed video at high magnification, as they move in microfluidic channels. An image analysis protocol allows us to decouple the cell movement from the motion of the cilia, thus allowing us to measure the ciliary beat frequency (CBF) and the spatio-temporal organization into metachronal waves along the cell periphery. Two distinct values of the CBF appear at different regions of the cell: most of the cilia beat in the range of 15 to 45 Hz, while the cilia in the peristomal region beat at almost double the frequency. The body and peristomal CBF display a nearly linear relation with the swimming velocity. Moreover the measurements do not display a measurable correlation between the swimming velocity and the metachronal wave velocity on the cell periphery. These measurements are repeated for four RNAi silenced mutants, where proteins specific to the cilia or to their connection to the cell base are depleted. We find that the mutants whose ciliary structure is affected display similar swimming to the control cells albeit with a reduced efficiency, while the mutations that affect the cilia's anchoring to the cell lead to strongly reduced ability to swim. This reduction in motility can be related to a loss of coordination between the ciliary beating in different parts of the cell.


Subject(s)
Biological Clocks/physiology , Cell Movement/physiology , Cilia/physiology , Molecular Motor Proteins/metabolism , Paramecium/cytology , Paramecium/physiology , Swimming/physiology , Cilia/ultrastructure , Microscopy, Video/methods , Molecular Motor Proteins/genetics , Mutation , Oscillometry/methods , RNA Interference/physiology
18.
Hepatology ; 60(2): 700-14, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24715669

ABSTRACT

UNLABELLED: Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca(2+) . We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. CONCLUSION: We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct development and have important potential for therapeutic strategies, including bioengineered liver approaches.


Subject(s)
Biliary Tract/cytology , Cell Culture Techniques/methods , Embryonic Stem Cells/cytology , Epithelial Cells/cytology , Hepatocytes/cytology , Pluripotent Stem Cells/cytology , Biomarkers , Cell Differentiation , Cell Lineage , Cell Polarity , Cells, Cultured , Cholagogues and Choleretics/pharmacology , Culture Media/pharmacology , Human Growth Hormone/pharmacology , Humans , Interleukin-6/pharmacology , Taurocholic Acid/pharmacology , Transcriptome
19.
Biol Cell ; 105(12): 561-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24117459

ABSTRACT

BACKGROUND INFORMATION: Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. RESULTS: We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. CONCLUSIONS: This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions.


Subject(s)
Cadmium/metabolism , Gap Junctions/metabolism , Hepatocytes/metabolism , Liver/cytology , Tight Junction Proteins/metabolism , Cell Line , Cells, Cultured , Hepatocytes/cytology , Humans , Liver/metabolism , Tight Junctions/metabolism , Tissue Scaffolds
20.
Biophys J ; 105(5): 1268-75, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24010670

ABSTRACT

Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca(2+) handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca(2+) dynamics in this cell type. We found that in hepatocytes isolated from Hint2(-/-) mice, the frequency of Ca(2+) oscillations induced by 1 µM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca(2+) pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2(-/-) mice; we found that Hint2 accelerates Ca(2+) pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca(2+) in suspensions of mitochondria. This prediction was then confirmed experimentally.


Subject(s)
Calcium/metabolism , Hydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Hydrolases/deficiency , Membrane Potential, Mitochondrial , Mice , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/deficiency , Models, Biological , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...