Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Braz. J. Pharm. Sci. (Online) ; 56: e18327, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132053

ABSTRACT

Hypericum sinaicum L. is an endangered Egyptian medicinal plant of high importance due to the presence of naphthodianthrones (hypericins), which have photodynamic properties and pharmaceutical potential. We sought to assess H. sinaicum ability to develop hairy roots that could be cultured in contained conditions in vitro and used as a source for hypericin production. We used four A. rhizogenes strains differing in their plasmids and chromosomal backgrounds to inoculate excised H. sinaicum root, stem and leaf explants to induce hairy root development. Additionally, inoculum was applied to shoots held in Rockwool cubes supporting their stand after removal of the root system. All explant types were susceptible to A. rhizogenes although stem explants responded more frequently (over 90%) than other explant types. The A4 and A4T A. rhizogenes strains were highly, and equally effective in hairy root induction on 66-72% of explants while the LBA1334 strain was the most effective in transformation of shoots. Sonication applied to explants during inoculation enhanced the frequency of hairy root development, the most effective was 60 s treatment doubling the percentage of explants with hairy roots. However, shoot transformation was the most effective approach as shoots developed hairy roots within 10 days after inoculation. Molecular analyses confirmed that the established hairy root cultures in vitro were indeed obtained due to a horizontal gene transfer from bacteria. These cultures grew fast and the hypericin content in hairy roots was about two fold higher than in H. sinaicum plants as determined by HPLC.


Subject(s)
Plants, Medicinal/classification , Plant Roots/adverse effects , Hypericum/adverse effects , Agrobacterium/metabolism , Plasmids , In Vitro Techniques/instrumentation , Pharmaceutical Preparations/analysis , Chromatography, High Pressure Liquid/methods , Microscopy, Electron, Scanning Transmission/methods
2.
Oncotarget ; 8(20): 33779-33795, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28422713

ABSTRACT

Inhibition of oncogenic transcriptional programs is a promising therapeutic strategy. A substituted tricyclic benzimidazole, SEL120-34A, is a novel inhibitor of Cyclin-dependent kinase 8 (CDK8), which regulates transcription by associating with the Mediator complex. X-ray crystallography has shown SEL120-34A to be a type I inhibitor forming halogen bonds with the protein's hinge region and hydrophobic complementarities within its front pocket. SEL120-34A inhibits phosphorylation of STAT1 S727 and STAT5 S726 in cancer cells in vitro. Consistently, regulation of STATs- and NUP98-HOXA9- dependent transcription has been observed as a dominant mechanism of action in vivo. Treatment with the compound resulted in a differential efficacy on AML cells with elevated STAT5 S726 levels and stem cell characteristics. In contrast, resistant cells were negative for activated STAT5 and revealed lineage commitment. In vivo efficacy in xenotransplanted AML models correlated with significant repression of STAT5 S726. Favorable pharmacokinetics, confirmed safety and in vivo efficacy provide a rationale for the further clinical development of SEL120-34A as a personalized therapeutic approach in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Protein Interaction Domains and Motifs/drug effects , Protein Kinase Inhibitors/pharmacology , STAT1 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cyclin-Dependent Kinase 8/chemistry , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Models, Molecular , Molecular Conformation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , STAT1 Transcription Factor/chemistry , STAT5 Transcription Factor/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...