Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 5(2): eaav2568, 2019 02.
Article in English | MEDLINE | ID: mdl-30783627

ABSTRACT

Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4'-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems.


Subject(s)
Biomimetics , Nanopores , Potassium/chemistry , Biomimetics/methods , Models, Theoretical , Nanotechnology , Phase Transition
2.
J Am Chem Soc ; 141(8): 3691-3698, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30712346

ABSTRACT

Nanopores exhibit a set of interesting transport properties that stem from interactions of the passing ions and molecules with the pore walls. Nanopores are used, for example, as ionic diodes and transistors, biosensors, and osmotic power generators. Using nanopores is however disadvantaged by their high resistance, small switching currents in nA range, low power generated, and signals that can be difficult to distinguish from the background. Here, we present a mesopore with ionic conductance reaching µS that rectifies ion current in salt concentrations as high as 1 M. The mesopore is conically shaped, and its region close to the narrow opening is filled with high molecular weight poly-l-lysine. To elucidate the underlying mechanism of ion current rectification (ICR), a continuum model based on a set of Poisson-Nernst-Planck and Stokes-Brinkman equations was adopted. The results revealed that embedding the polyelectrolyte in a conical pore leads to rectification of the effect of concentration polarization (CP) that is induced by the polyelectrolyte, and observed as voltage polarity-dependent modulations of ionic concentrations in the pore, and consequently ICR. Our work reveals the link between ICR and CP, significantly extending the knowledge of how charged polyelectrolytes modulate ion transport on nano- and mesoscales. The osmotic power application is also demonstrated with the developed polyelectrolyte-filled mesopores, which enable a power of up to ∼120 pW from one pore, which is much higher than the reported values using single nanoscale pores.

SELECTION OF CITATIONS
SEARCH DETAIL
...