ABSTRACT
The effect of corn processing (9 kg of dry matter/d of ground dry shelled or 9 kg of dry matter/d of steam rolled) and supplemental hay (0 or 3.2 kg of dry matter/d of alfalfa hay) on milk yield and composition, rumen environment, and starch utilization by lactating cows grazing grass-legume pasture was studied. Twelve rumen cannulated, multiparous Holstein cows in early lactation (95 d in milk), were assigned to a 4 x 4 Latin square design replicated three times. Treatments were ground shelled corn-based concentrate, ground shelled corn-based concentrate plus alfalfa hay, steam-rolled, corn-based concentrate, or steam-rolled, corn-based concentrate plus alfalfa hay. Supplements were fed in equal proportions twice daily. Cows fed steam-rolled corn tended to have higher percentage of milk protein and lower milk urea nitrogen concentrations than cows fed shelled corn. Milk yield was not affected by corn processing or hay supplementation. Intake of pasture forage but not total dry matter intake was reduced by hay supplementation. Starch plus free glucose digestibility in the total tract was not affected by grain processing; however, starch plus free glucose digestibility tended to increase with hay supplementation. Supplemental hay increased starch plus free glucose digestibility through changes in rumen digestion kinetics. Hay supplementation reduced the liquid rate of passage, and tended to reduce particulate turnover. Rumen degradability of pasture forage organic matter tended to be higher for cows fed supplemental hay. Supplemental hay in these diets had a greater impact on starch utilization than corn processing.
Subject(s)
Animal Feed , Food, Fortified , Lactation/physiology , Milk/metabolism , Poaceae , Rumen/physiology , Zea mays , Animals , Cattle , Dairying/methods , Female , Food Handling/methods , Milk/chemistry , ParityABSTRACT
The impact of supplemental energy on nutrient utilization, fiber digestion, rumen fermentation, and lactation performance was evaluated in dairy cows grazing pastures composed of brome, orchardgrass, red clover, and alfalfa. Three amounts [0, 5, and 10 kg dry matter (DM)/d] of ground dry shelled corn-based concentrate were supplemented to nine rumen cannulated Holstein cows in a 3 x 3 Latin square replicated three times. Cows were on average 84+/-13 d in milk and producing 41.6+/-5.9 kg of milk/d at the beginning of the study. An increase in amounts of concentrate in the diets was associated with an increase in milk production, solids-corrected milk, and concentrations of milk protein and SNF. Milk fat percentage and milk urea nitrogen concentration decreased linearly with supplementation. Milk production and protein percentage were 21.8, 26.8, and 30.4 kg/d, and 2.85, 2.95, and 3.05% for the increasing levels of concentrate, respectively. Intake and digestibility of DM and organic matter (OM) increased as grain supplementation increased. Ruminal pH and total volatile fatty acid concentration (VFA) were not affected by supplementation or the amount of concentrate. Ruminal ammonia concentration was reduced by supplementation, presumably due to a decrease in N intake and greater use of ammonia-N for rumen microbial protein synthesis. Rumen fermentation varied throughout the day, with lower mean pH and higher VFA concentrations at night. Supplementation increased total OM intake, decreased forage OM intake, and increased the proportion of OM that was digested in the intestines. Total DM intake by grazing dairy cows can be increased using ground dry shelled corn-based concentrate without causing negative effects on forage digestion.