Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acad Radiol ; 29 Suppl 1: S135-S144, 2022 01.
Article in English | MEDLINE | ID: mdl-33317911

ABSTRACT

RATIONALE AND OBJECTIVES: Computer-aided methods have been widely applied to diagnose lesions on breast magnetic resonance imaging (MRI). The first step was to identify abnormal areas. A deep learning Mask Regional Convolutional Neural Network (R-CNN) was implemented to search the entire set of images and detect suspicious lesions. MATERIALS AND METHODS: Two DCE-MRI datasets were used, 241 patients acquired using non-fat-sat sequence for training, and 98 patients acquired using fat-sat sequence for testing. All patients have confirmed unilateral mass cancers. The tumor was segmented using fuzzy c-means clustering algorithm to serve as the ground truth. Mask R-CNN was implemented with ResNet-101 as the backbone. The neural network output the bounding boxes and the segmented tumor for evaluation using the Dice Similarity Coefficient (DSC). The detection performance, and the trade-off between sensitivity and specificity, was analyzed using free response receiver operating characteristic. RESULTS: When the precontrast and subtraction image of both breasts were used as input, the false positive from the heart and normal parenchymal enhancements could be minimized. The training set had 1469 positive slices (containing lesion) and 9135 negative slices. In 10-fold cross-validation, the mean accuracy = 0.86 and DSC = 0.82. The testing dataset had 1568 positive and 7264 negative slices, with accuracy = 0.75 and DSC = 0.79. When the obtained per-slice results were combined, 240 of 241 (99.5%) lesions in the training and 98 of 98 (100%) lesions in the testing datasets were identified. CONCLUSION: Deep learning using Mask R-CNN provided a feasible method to search breast MRI, localize, and segment lesions. This may be integrated with other artificial intelligence algorithms to develop a fully automatic breast MRI diagnostic system.


Subject(s)
Breast Neoplasms , Artificial Intelligence , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer
2.
Front Oncol ; 11: 774248, 2021.
Article in English | MEDLINE | ID: mdl-34869020

ABSTRACT

OBJECTIVE: To build radiomics models using features extracted from DCE-MRI and mammography for diagnosis of breast cancer. MATERIALS AND METHODS: 266 patients receiving MRI and mammography, who had well-enhanced lesions on MRI and histologically confirmed diagnosis were analyzed. Training dataset had 146 malignant and 56 benign, and testing dataset had 48 malignant and 18 benign lesions. Fuzzy-C-means clustering algorithm was used to segment the enhanced lesion on subtraction MRI maps. Two radiologists manually outlined the corresponding lesion on mammography by consensus, with the guidance of MRI maximum intensity projection. Features were extracted using PyRadiomics from three DCE-MRI parametric maps, and from the lesion and a 2-cm bandshell margin on mammography. The support vector machine (SVM) was applied for feature selection and model building, using 5 datasets: DCE-MRI, mammography lesion-ROI, mammography margin-ROI, mammography lesion+margin, and all combined. RESULTS: In the training dataset evaluated using 10-fold cross-validation, the diagnostic accuracy of the individual model was 83.2% for DCE-MRI, 75.7% for mammography lesion, 64.4% for mammography margin, and 77.2% for lesion+margin. When all features were combined, the accuracy was improved to 89.6%. By adding mammography features to MRI, the specificity was significantly improved from 69.6% (39/56) to 82.1% (46/56), p<0.01. When the developed models were applied to the independent testing dataset, the accuracy was 78.8% for DCE-MRI and 83.3% for combined MRI+Mammography. CONCLUSION: The radiomics model built from the combined MRI and mammography has the potential to provide a machine learning-based diagnostic tool and decrease the false positive diagnosis of contrast-enhanced benign lesions on MRI.

3.
Front Oncol ; 11: 728224, 2021.
Article in English | MEDLINE | ID: mdl-34790569

ABSTRACT

BACKGROUND: A wide variety of benign and malignant processes can manifest as non-mass enhancement (NME) in breast MRI. Compared to mass lesions, there are no distinct features that can be used for differential diagnosis. The purpose is to use the BI-RADS descriptors and models developed using radiomics and deep learning to distinguish benign from malignant NME lesions. MATERIALS AND METHODS: A total of 150 patients with 104 malignant and 46 benign NME were analyzed. Three radiologists performed reading for morphological distribution and internal enhancement using the 5th BI-RADS lexicon. For each case, the 3D tumor mask was generated using Fuzzy-C-Means segmentation. Three DCE parametric maps related to wash-in, maximum, and wash-out were generated, and PyRadiomics was applied to extract features. The radiomics model was built using five machine learning algorithms. ResNet50 was implemented using three parametric maps as input. Approximately 70% of earlier cases were used for training, and 30% of later cases were held out for testing. RESULTS: The diagnostic BI-RADS in the original MRI report showed that 104/104 malignant and 36/46 benign lesions had a BI-RADS score of 4A-5. For category reading, the kappa coefficient was 0.83 for morphological distribution (excellent) and 0.52 for internal enhancement (moderate). Segmental and Regional distribution were the most prominent for the malignant group, and focal distribution for the benign group. Eight radiomics features were selected by support vector machine (SVM). Among the five machine learning algorithms, SVM yielded the highest accuracy of 80.4% in training and 77.5% in testing datasets. ResNet50 had a better diagnostic performance, 91.5% in training and 83.3% in testing datasets. CONCLUSION: Diagnosis of NME was challenging, and the BI-RADS scores and descriptors showed a substantial overlap. Radiomics and deep learning may provide a useful CAD tool to aid in diagnosis.

4.
J Biomed Opt ; 22(4): 45003, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28384703

ABSTRACT

Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and


Subject(s)
Carcinoma, Ductal, Breast/blood supply , Carcinoma, Ductal, Breast/diagnostic imaging , Spectrophotometry/methods , Spectroscopy, Near-Infrared/methods , Tomography, Optical/methods , Adult , Carcinoma, Ductal, Breast/drug therapy , Diffusion , Female , Hemoglobins/analysis , Humans , Lipids/blood , Models, Theoretical , Neoadjuvant Therapy , Oxyhemoglobins/analysis , Phantoms, Imaging
5.
Ann Surg Oncol ; 23(10): 3168-74, 2016 10.
Article in English | MEDLINE | ID: mdl-27469121

ABSTRACT

OBJECTIVES: This study was a multicenter evaluation of the SAVI SCOUT(®) breast localization and surgical guidance system using micro-impulse radar technology for the removal of nonpalpable breast lesions. The study was designed to validate the results of a recent 50-patient pilot study in a larger multi-institution trial. The primary endpoints were the rates of successful reflector placement, localization, and removal. METHODS: This multicenter, prospective trial enrolled patients scheduled to have excisional biopsy or breast-conserving surgery of a nonpalpable breast lesion. From March to November 2015, 154 patients were consented and evaluated by 20 radiologists and 16 surgeons at 11 participating centers. Patients had SCOUT(®) reflectors placed up to 7 days before surgery, and placement was confirmed by mammography or ultrasonography. Implanted reflectors were detected by the SCOUT(®) handpiece and console. Presence of the reflector in the excised surgical specimen was confirmed radiographically, and specimens were sent for routine pathology. RESULTS: SCOUT(®) reflectors were successfully placed in 153 of 154 patients. In one case, the reflector was placed at a distance from the target that required a wire to be placed. All 154 lesions and reflectors were successfully removed during surgery. For 101 patients with a preoperative diagnosis of cancer, 86 (85.1 %) had clear margins, and 17 (16.8 %) patients required margin reexcision. CONCLUSIONS: SCOUT(®) provides a reliable and effective alternative method for the localization and surgical excision of nonpalpable breast lesions using no wires or radioactive materials, with excellent patient, radiologist, and surgeon acceptance.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Radar , Surgery, Computer-Assisted/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Mammography , Margins of Excision , Middle Aged , Neoplasm, Residual , Palpation , Prospective Studies , Reoperation , Surgery, Computer-Assisted/instrumentation , Ultrasonography, Mammary
SELECTION OF CITATIONS
SEARCH DETAIL
...