Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(14): 9802-9818, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35798565

ABSTRACT

A major limitation of pulmonary delivery is that drugs can exhibit suboptimal pharmacokinetic profiles resulting from rapid elimination from the pulmonary tissue. This can lead to systemic side effects and a short duration of action. A series of dibasic dipeptides attached to the poorly lung-retentive muscarinic M3 receptor antagonist piperidin-4-yl 2-hydroxy-2,2-diphenylacetate (1) through a pH-sensitive-linking group have been evaluated. Extensive optimization resulted in 1-(((R)-2-((S)-2,6-diaminohexanamido)-3,3-dimethylbutanoyl)oxy)ethyl 4-(2-hydroxy-2,2-diphenylacetoxy)piperidine-1-carboxylate (23), which combined very good in vitro stability and very high rat lung binding. Compound 23 progressed to pharmacokinetic studies in rats, where, at 24 h post dosing in the rat lung, the total lung concentration of 23 was 31.2 µM. In addition, high levels of liberated drug 1 were still detected locally, demonstrating the benefit of this novel prodrug approach for increasing the apparent pharmacokinetic half-life of drugs in the lungs following pulmonary dosing.


Subject(s)
Prodrugs , Animals , Half-Life , Lung , Muscarinic Antagonists/pharmacology , Prodrugs/chemistry , Rats
2.
J Med Chem ; 64(10): 6670-6695, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33724031

ABSTRACT

The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.


Subject(s)
Adenosine A1 Receptor Antagonists/chemical synthesis , Fluorescent Dyes/chemistry , Receptor, Adenosine A1/chemistry , Adenosine A1 Receptor Antagonists/metabolism , Bridged Bicyclo Compounds/chemistry , Drug Design , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Kinetics , Ligands , Octanes/chemistry , Receptor, Adenosine A1/metabolism , Structure-Activity Relationship , Xanthine/chemistry , Xanthine/metabolism
3.
J Med Chem ; 63(5): 2656-2672, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31887252

ABSTRACT

Among class A G protein-coupled receptors (GPCR), the human adenosine A2A receptor (hA2AAR) remains an attractive drug target. However, translation of A2AAR ligands into the clinic has proved challenging and an improved understanding of A2AAR pharmacology could promote development of more efficacious therapies. Subtype-selective fluorescent probes would allow detailed real-time pharmacological investigations both in vitro and in vivo. In the present study, two families of fluorescent probes were designed around the known hA2AAR selective antagonist preladenant (SCH 420814). Both families of fluorescent antagonists retained affinity at the hA2AAR, selectivity over all other adenosine receptor subtypes and allowed clear visualization of specific receptor localization through confocal imaging. Furthermore, the Alexa Fluor 647-labeled conjugate allowed measurement of ligand binding affinities of unlabeled hA2AAR antagonists using a bioluminescence resonance energy transfer (NanoBRET) assay. The fluorescent ligands developed here can therefore be applied to a range of fluorescence-based techniques to further interrogate hA2AAR pharmacology and signaling.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Fluorescent Dyes/chemistry , Pyrimidines/chemistry , Receptor, Adenosine A2A/analysis , Triazoles/chemistry , Adenosine A2 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Drug Discovery , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacology , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Optical Imaging , Pyrimidines/metabolism , Pyrimidines/pharmacology , Receptor, Adenosine A2A/metabolism , Triazoles/metabolism , Triazoles/pharmacology
4.
iScience ; 6: 280-288, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30240618

ABSTRACT

The therapeutic action of a drug depends on its ability to engage with its molecular target in vivo. However, current drug discovery strategies quantify drug levels within organs rather than determining the binding of drugs directly to their specific molecular targets in vivo. This is a particular problem for assessing the therapeutic potential of drugs that target malignant tumors where access and binding may be impaired by disrupted vasculature and local hypoxia. Here we have used triple-negative human breast cancer cells expressing ß2-adrenoceptors tagged with the bioluminescence protein NanoLuc to provide a bioluminescence resonance energy transfer approach to directly quantify ligand binding to a G protein-coupled receptor in vivo using a mouse model of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...