Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 55(8): 754-758, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28233402

ABSTRACT

KCNE1 is known to modulate the voltage-gated potassium channel α subunit KCNQ1 to generate slowly activating potassium currents. This potassium channel is essential for the cardiac action potential that mediates a heartbeat as well as the potassium ion homeostasis in the inner ear. Therefore, it is important to know the structure and dynamics of KCNE1 to better understand its modulatory role. Previously, the Sanders group solved the three-dimensional structure of KCNE1 in LMPG micelles, which yielded a better understanding of this KCNQ1/KCNE1 channel activity. However, research in the Lorigan group showed different structural properties of KCNE1 when incorporated into POPC/POPG lipid bilayers as opposed to LMPG micelles. It is hence necessary to study the structure of KCNE1 in a more native-like environment such as multi-lamellar vesicles. In this study, the dynamics of lipid bilayers upon incorporation of the membrane protein KCNE1 were investigated using 31 P solid-state nuclear magnetic resonance (NMR) spectroscopy. Specifically, the protein/lipid interaction was studied at varying molar ratios of protein to lipid content. The static 31 P NMR and T1 relaxation time were investigated. The 31 P NMR powder spectra indicated significant perturbations of KCNE1 on the phospholipid headgroups of multi-lamellar vesicles as shown from the changes in the 31 P spectral line shape and the chemical shift anisotropy line width. 31 P T1 relaxation times were shown to be reversely proportional to the molar ratios of KCNE1 incorporated. The 31 P NMR data clearly indicate that KCNE1 interacts with the membrane. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Lipid Bilayers/chemistry , Potassium Channels, Voltage-Gated/chemistry , Amino Acid Sequence , Humans , Kinetics , Magnetic Resonance Spectroscopy , Micelles
2.
Am J Physiol Renal Physiol ; 312(4): F791-F805, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28122715

ABSTRACT

Primary cilia sense environmental conditions, including osmolality, but whether cilia participate in the osmotic response in renal epithelial cells is not known. The transient receptor potential (TRP) channels TRPV4 and TRPM3 are osmoresponsive. TRPV4 localizes to cilia in certain cell types, while renal subcellular localization of TRPM3 is not known. We hypothesized that primary cilia are required for maximal activation of the osmotic response of renal epithelial cells and that ciliary TRPM3 and TRPV4 mediate that response. Ciliated [murine epithelial cells from the renal inner medullary collecting duct (mIMCD-3) and 176-5] and nonciliated (176-5Δ) renal cells expressed Trpv4 and Trpm3 Ciliary expression of TRPM3 was observed in mIMCD-3 and 176-5 cells and in wild-type mouse kidney tissue. TRPV4 was identified in cilia and apical membrane of mIMCD-3 cells by electrophysiology and in the cell body by immunofluorescence. Hyperosmolal stress at 500 mOsm/kg (via NaCl addition) induced the osmotic response genes betaine/GABA transporter (Bgt1) and aldose reductase (Akr1b3) in all ciliated cell lines. This induction was attenuated in nonciliated cells. A TRPV4 agonist abrogated Bgt1 and Akr1b3 induction in ciliated and nonciliated cells. A TRPM3 agonist attenuated Bgt1 and Akr1b3 induction in ciliated cells only. TRPM3 knockout attenuated Akr1b3 induction. Viability under osmotic stress was greater in ciliated than nonciliated cells. Akr1b3 induction was also less in nonciliated than ciliated cells when mannitol was used to induce hyperosmolal stress. These findings suggest that primary cilia are required for the maximal osmotic response in renal epithelial cells and that TRPM3 is involved in this mechanism. TRPV4 appears to modulate the osmotic response independent of cilia.


Subject(s)
Epithelial Cells/metabolism , Kidney Tubules, Collecting/metabolism , Osmoregulation , Osmotic Pressure , TRPM Cation Channels/metabolism , Animals , CRISPR-Cas Systems , Cell Line , Cilia/metabolism , Epithelial Cells/drug effects , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Gene Editing , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Kidney Tubules, Collecting/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osmoregulation/drug effects , Osmotic Pressure/drug effects , Saline Solution, Hypertonic/pharmacology , Signal Transduction , TRPM Cation Channels/genetics , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Transfection
3.
Protein Sci ; 24(11): 1707-13, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26355804

ABSTRACT

Membrane proteins conduct many important biological functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is very difficult to obtain structural information on membrane-bound proteins using traditional biophysical techniques. We are developing a new approach to probe the secondary structure of membrane proteins using the pulsed EPR technique of Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. This method has been successfully applied to model peptides made synthetically. However, in order for this ESEEM technique to be widely applicable to larger membrane protein systems with no size limitations, protein samples with deuterated residues need to be prepared via protein expression methods. For the first time, this study shows that the ESEEM approach can be used to probe the local secondary structure of a (2) H-labeled d8 -Val overexpressed membrane protein in a membrane mimetic environment. The membrane-bound human KCNE1 protein was used with a known solution NMR structure to demonstrate the applicability of this methodology. Three different α-helical regions of KCNE1 were probed: the extracellular domain (Val21), transmembrane domain (Val50), and cytoplasmic domain (Val95). These results indicated α-helical structures in all three segments, consistent with the micelle structure of KCNE1. Furthermore, KCNE1 was incorporated into a lipid bilayer and the secondary structure of the transmembrane domain (Val50) was shown to be α-helical in a more native-like environment. This study extends the application of this ESEEM approach to much larger membrane protein systems that are difficult to study with X-ray crystallography and/or NMR spectroscopy.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Humans , Models, Molecular , Potassium Channels, Voltage-Gated , Protein Structure, Secondary
4.
Biochim Biophys Acta ; 1848(1 Pt B): 329-33, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24853657

ABSTRACT

Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Nanoparticles/chemistry , Magnetic Resonance Spectroscopy , Maleates/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Polystyrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...