Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254712

ABSTRACT

Alternative lengthening of telomeres (ALT) is a homologous recombination-based pathway utilized by 10-15% of cancer cells that allows cells to maintain their telomeres in the absence of telomerase. This pathway was originally discovered in the yeast Saccharomyces cerevisiae and, for decades, yeast has served as a robust model to study ALT. Using yeast as a model, two types of ALT (RAD51-dependent and RAD51-independent) have been described. Studies in yeast have provided the phenotypic characterization of ALT survivors, descriptions of the proteins involved, and implicated break-induced replication (BIR) as the mechanism responsible for ALT. Nevertheless, many questions have remained, and answering them has required the development of new quantitative methods. In this review we discuss the historic aspects of the ALT investigation in yeast as well as new approaches to investigating ALT, including ultra-long sequencing, computational modeling, and the use of population genetics. We discuss how employing new methods contributes to our current understanding of the ALT mechanism and how they may expand our understanding of ALT in the future.


Subject(s)
Saccharomyces cerevisiae , Telomere , Saccharomyces cerevisiae/genetics , Telomere/genetics , Computer Simulation , DNA Repair , Recombination, Genetic
2.
PLoS Genet ; 18(3): e1010087, 2022 03.
Article in English | MEDLINE | ID: mdl-35320272

ABSTRACT

The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genome , Phylogeny
3.
Mol Cell ; 81(8): 1816-1829.e5, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33639094

ABSTRACT

Alternative lengthening of telomeres (ALT) is a recombination process that maintains telomeres in the absence of telomerase and helps cancer cells to survive. Yeast has been used as a robust model of ALT; however, the inability to determine the frequency and structure of ALT survivors hinders understanding of the ALT mechanism. Here, using population and molecular genetics approaches, we overcome these problems and demonstrate that contrary to the current view, both RAD51-dependent and RAD51-independent mechanisms are required for a unified ALT survivor pathway. This conclusion is based on the calculation of ALT frequencies, as well as on ultra-long sequencing of ALT products that revealed hybrid sequences containing features attributed to both recombination pathways. Sequencing of ALT intermediates demonstrates that recombination begins with Rad51-mediated strand invasion to form DNA substrates that are matured by a Rad51-independent ssDNA annealing pathway. A similar unified ALT pathway may operate in other organisms, including humans.


Subject(s)
Saccharomyces cerevisiae/genetics , Telomere Homeostasis/genetics , Telomere/genetics , DNA/genetics , Rad51 Recombinase/genetics , Recombination, Genetic/genetics , Telomerase/genetics
4.
Genetics ; 210(2): 703-718, 2018 10.
Article in English | MEDLINE | ID: mdl-30131345

ABSTRACT

Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (e.g, genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.


Subject(s)
Drosophila/genetics , Hemizygote , Transcriptome , X Chromosome/genetics , Animals , Evolution, Molecular , Female , Male , Models, Genetic
5.
Philos Trans R Soc Lond B Biol Sci ; 372(1736)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29109230

ABSTRACT

The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Genome, Insect , Recombination, Genetic , Animals , Genetics, Population , Models, Genetic
6.
Microarrays (Basel) ; 5(2)2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27600073

ABSTRACT

Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

7.
Genome Biol Evol ; 8(8): 2597-612, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27492232

ABSTRACT

In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non-randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses.


Subject(s)
Crossing Over, Genetic , Drosophila melanogaster/genetics , Genome, Insect , Models, Genetic , Polymorphism, Genetic , Animals , Chromatin/genetics , Chromosomes, Insect/genetics , Machine Learning , Nucleotide Motifs
8.
PLoS Genet ; 10(6): e1004434, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24968283

ABSTRACT

The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS). Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and selective events, future analyses should incorporate BGS predictions and capture local recombination variation across genomes and along lineages.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Insect , Selection, Genetic/genetics , Animals , Chromosomes/genetics , DNA, Intergenic/genetics , Drosophila melanogaster/genetics , Introns/genetics , Mutation , Nucleotides/genetics
9.
BMC Genomics ; 14: 794, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24228734

ABSTRACT

BACKGROUND: Evidence in yeast indicates that gene expression is correlated with recombination activity and double-strand break (DSB) formation in some hotspots. Studies of nucleosome occupancy in yeast and mice also suggest that open chromatin influences the formation of DSBs. In Drosophila melanogaster, high-resolution recombination maps show an excess of DSBs within annotated transcripts relative to intergenic sequences. The impact of active transcription on recombination landscapes, however, remains unexplored in a multicellular organism. We then investigated the transcription profile during early meiosis in D. melanogaster females to obtain a glimpse at the relevant transcriptional dynamics during DSB formation, and test the specific hypothesis that DSBs preferentially target transcriptionally active genomic regions. RESULTS: Our study of transcript profiles of early- and late-meiosis using mRNA-seq revealed, 1) significant differences in gene expression, 2) new genes and exons, 3) parent-of-origin effects on transcription in early-meiosis stages, and 4) a nonrandom genomic distribution of transcribed genes. Importantly, genomic regions that are more actively transcribed during early meiosis show higher rates of recombination, and we ruled out DSB preference for genic regions that are not transcribed. CONCLUSIONS: Our results provide evidence in a multicellular organism that transcription during the initial phases of meiosis increases the likelihood of DSB and give insight into the molecular determinants of recombination rate variation across the D. melanogaster genome. We propose that a model where variation in gene expression plays a role altering the recombination landscape across the genome could provide a molecular, heritable and plastic mechanism to observed patterns of recombination variation, from the high level of intra-specific variation to the known influence of environmental factors and stress conditions.


Subject(s)
DNA Breaks, Double-Stranded , Gene Expression Profiling , Meiosis/genetics , Recombination, Genetic , Animals , Chromatin/genetics , Drosophila melanogaster/genetics , Female , Gene Expression Regulation, Developmental , Genome, Insect , Ovary/metabolism
10.
PLoS Genet ; 8(10): e1002905, 2012.
Article in English | MEDLINE | ID: mdl-23071443

ABSTRACT

Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.


Subject(s)
Drosophila melanogaster/genetics , Recombination, Genetic , Animals , Base Sequence , Chromosomes , Crossing Over, Genetic , Evolution, Molecular , Female , Gene Conversion , Genome , Male , Nucleotide Motifs , Polymorphism, Genetic
11.
J Mol Evol ; 74(5-6): 281-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22811321

ABSTRACT

Gene duplication and divergence are overwhelmingly considered to be the primary mechanisms by which cytochrome P450 monooxygenases (P450s) have radiated into a large and diverse gene superfamily. To address how environmental stress drives the fixation and diversification of gene duplications, we have analyzed Cyp12d1 and Cyp12d3, a pair of duplicated genes found in the sequenced Drosophila genomes of the melanogaster group. The paralog Cyp12d3, which is not found in Drosophila melanogaster, is basal to the melanogaster group, after it split from the obscura group (ca. 50 mya), and has a significant signature of positive selection in two species (D. sechellia and D. ananassae). Examination of the Cyp12d1 region in D. melanogaster wildtype and isoline populations revealed variation both in copy number and sequence, including splice-site variations, which certainly alter gene function. Further investigations of several strains have identified three cases in which differences in the Cyp12d1 gene region are associated with the differences in transcript abundance and transcriptional responses to the environmental stresses that have not been seen for other detoxificative loci. Together, these data highlight the value of using both macro- and microevolutionary approaches in studying the duplication and divergence events associated with detoxification genes and lay important groundwork for future studies in the field of evolutionary toxicogenomics, which uses the principles of phylogenetic analysis to predict possible enzymatic functions.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Drosophila Proteins/genetics , Drosophila/enzymology , Drosophila/genetics , Evolution, Molecular , Genetic Variation , Toxicogenetics , Amino Acids/genetics , Animals , Base Sequence , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Environment , Gene Dosage/genetics , Gene Expression Regulation, Enzymologic , Genes, Insect/genetics , Genetic Loci/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity , Stress, Physiological/genetics , Time Factors
12.
J Hered ; 101 Suppl 1: S127-34, 2010.
Article in English | MEDLINE | ID: mdl-20421321

ABSTRACT

Recent years have witnessed the integration of theoretical advances in population genetics with large-scale analyses of complete genomes, with a growing number of studies suggesting pervasive natural selection that includes frequent deleterious as well as adaptive mutations. In finite populations, however, mutations under selection alter the fate of genetically linked mutations (the so-called Hill-Robertson effect). Here we review the evolutionary consequences of selection at linked sites (linked selection) focusing on its effects on nearby nucleotides in genomic regions with nonreduced recombination. We argue that these local effects of linkage may account for differences in selection intensity among genes. We also show that even high levels of recombination are unlikely to remove all effects of linked selection, causing a reduction in the polymorphism to divergence ratio (r(pd)) at neutral sites. Because a number of methods employed to estimate the magnitude and frequency of adaptive mutations take reduced r(pd) as evidence of positive selection, ignoring local linkage effects may lead to misleading estimates of the proportion of adaptive substitutions and estimates of positive selection. These biases are caused by employing methods that do not account for local variation in the relative effective population size (N(e)) caused by linked selection.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Genetic Linkage , Genetics, Population , Models, Genetic , Recombination, Genetic/genetics , Selection, Genetic , Mutation/genetics
13.
Mol Biol Evol ; 26(2): 249-53, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19008527

ABSTRACT

Actin is a conserved cytoskeletal protein that is well studied in model organisms although much less is known about actin molecular evolution in taxonomically diverse algae. Here, we analyzed 107 novel partial algal actin sequences and report some unexpected results. First, monophyletic actin gene families in multiple, phylogenetically distantly related algal taxa contain two distinct clades of sequences. One of these clades contains highly conserved sequences, whereas the second has multiple members with a significantly elevated substitution rate. This rate difference is associated with an excess of synonymous substitutions, strongly suggesting that both isoforms are active. These results paint a novel picture of actin gene evolution in algae showing it to be a remarkably dynamic system with duplication, homogenization, and potential functional diversification occurring independently in distantly related lineages.


Subject(s)
Actins/genetics , Algal Proteins/genetics , Eukaryota/genetics , Evolution, Molecular , Base Sequence , Molecular Sequence Data , Phylogeny
14.
Ann N Y Acad Sci ; 1133: 26-43, 2008.
Article in English | MEDLINE | ID: mdl-18559814

ABSTRACT

The abundance of sex and recombination is still one of the most puzzling questions in the theory of evolution: Most models find that recombination can evolve, but only under a limited range of parameters. Here we review the major models and supporting evidence, concentrating on recent approaches where more realistic assumptions help explain the evolution of sex and recombination under a wider parameter range: finite populations, selection over long genomes, variation in recombination across the genome, and plasticity of sex and recombination. We discuss the similarities and differences between the evolution of sex and that of recombination.


Subject(s)
Biological Evolution , Recombination, Genetic/physiology , Reproduction/genetics , Sex , Alleles , Animals , Chromosome Segregation/genetics , Chromosome Segregation/physiology , Environment , Epistasis, Genetic , Genetic Drift , Linkage Disequilibrium/physiology , Mutation , Population Density , Reproduction/physiology
15.
PLoS One ; 3(5): e2171, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18478122

ABSTRACT

BACKGROUND: The genome of the pico-eukaryotic (bacterial-sized) prasinophyte green alga Ostreococcus lucimarinus has one of the highest gene densities known in eukaryotes, yet it contains many introns. Phylogenetic studies suggest this unusually compact genome (13.2 Mb) is an evolutionarily derived state among prasinophytes. The presence of introns in the highly reduced O. lucimarinus genome appears to be in opposition to simple explanations of genome evolution based on unidirectional tendencies, either neutral or selective. Therefore, patterns of intron retention in this species can potentially provide insights into the forces governing intron evolution. METHODOLOGY/PRINCIPAL FINDINGS: Here we studied intron features and levels of expression in O. lucimarinus using expressed sequence tags (ESTs) to annotate the current genome assembly. ESTs were assembled into unigene clusters that were mapped back to the O. lucimarinus Build 2.0 assembly using BLAST and the level of gene expression was inferred from the number of ESTs in each cluster. We find a positive correlation between expression levels and both intron number (R = +0.0893, p = <0.0005) and intron density (number of introns/kb of CDS; R = +0.0753, p = <0.005). CONCLUSIONS/SIGNIFICANCE: In a species with a genome that has been recently subjected to a great reduction of non-coding DNA, these results imply the existence of selective/functional roles for introns that are principally detectable in highly expressed genes. In these cases, introns are likely maintained by balancing the selective forces favoring their maintenance with other mutational and/or selective forces acting on genome size.


Subject(s)
Chlorophyta/genetics , Expressed Sequence Tags , Gene Expression , Genes, Plant , Introns , Exons
16.
Genetics ; 179(2): 1009-20, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18505872

ABSTRACT

Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Eye Proteins/genetics , Genes, Insect , Selection, Genetic , Spermatogenesis/genetics , Animals , Drosophila/classification , Drosophila Proteins/chemistry , Drosophila melanogaster/genetics , Evolution, Molecular , Eye Proteins/chemistry , Genetic Variation , Male , Molecular Sequence Data , Mutation , Phylogeny , Polymorphism, Genetic , Protein Structure, Tertiary , Species Specificity
17.
J Mol Evol ; 66(3): 224-31, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18288436

ABSTRACT

In many organisms, synonymous codon usage is biased by a history of natural selection. However, codon bias, itself, does not indicate that selection is ongoing; it may be a vestige of past selection. Simple statistical tests have been devised to infer ongoing selection on codon usage by comparing the derived state frequency spectra at polymorphic sites segregating either derived preferred codons or derived unpreferred codons; if selection is effective, the frequency of derived states should be higher in the former. We propose a new test that uses the inferred degree of preference, essentially calculating the correlation of derived state frequency and the difference in preference between the derived and the ancestral states; the correlation should be positive if selection is effective. When implementing the test, derived and ancestral states can be assigned by parsimony or on the basis of relative probability. In either case, statistical significance is estimated by a simple permutation test. We explored the statistical power of the test by sampling polymorphism data from 14 loci in 16 strains of D. simulans, finding that the test retains 80% power even when quite a few of the data are discarded. The power of the test likely reflects better use of multiple features of the data, combining population frequencies of polymorphic variants and quantitative estimates of codon preferences. We also applied this novel test to 14 newly sequenced loci in five strains of D. mauritiana, showing for the first time ongoing selection on codon usage in this species.


Subject(s)
Codon , Drosophila/genetics , Selection, Genetic , Animals , Mutation , Species Specificity
18.
BMC Evol Biol ; 6: 78, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17022817

ABSTRACT

BACKGROUND: Cyanidiales are unicellular extremophilic red algae that inhabit acidic and high temperature sites around hot springs and have also adapted to life in endolithic and interlithic habitats. Comparative genomic analysis of Cyanidioschyzon merolae and Galdieria sulphuraria predicts that the latter may be more broadly distributed in extreme environments because its genome contains membrane transporters involved in the uptake of reduced carbon compounds that are absent from C. merolae. Analysis of an endolithic site in the Phlegrean Fields near Naples, Italy is consistent with this prediction showing this population to be comprised solely of the newly described lineage Galdieria-B and C. merolae to be limited to humid habitats. Here, we conducted an environmental PCR survey of another extreme environment in Tuscany, Italy and contrasted Cyanidiales population structure at endolithic and interlithic habitats in Naples and Tuscany. RESULTS: We find a second Galdieria lineage (Galdieria-A) in endolithic and interlithic habitats in Tuscany but surprisingly Cyanidium was also present at these sites. The photoautotrophic Cyanidium apparently survives below the rock surface where sufficient light is available for photosynthesis. C. merolae is absent from all endolithic and interlithic sites in Tuscany. Population genetic analyses of a partial calmodulin gene fragment suggest a recent establishment or recurrent gene flow between populations in Tuscany, whereas the highly structured Galdieria-B population in Naples likely originated from 2-3 founder events. We find evidence of several recombination events across the calmodulin gene, potentially indicating the presence of sexual reproduction in the Tuscany populations. CONCLUSION: Our study provides important data regarding population structure in extreme endolithic environments and insights into how Cyanidiales may be established in and adapt to these hostile environments.


Subject(s)
Rhodophyta/genetics , Rhodophyta/physiology , Ecosystem , Gene Expression Regulation, Plant , Gene Flow , Genetic Variation , Italy , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Population Dynamics , Rhodophyta/classification
19.
In Silico Biol ; 6(3): 237-42, 2006.
Article in English | MEDLINE | ID: mdl-16922687

ABSTRACT

Most transcriptional regulatory elements are located in non-coding DNA. In particular, some first introns play a vital role in transcriptional control and splicing. The length and GC-content of first exons and introns in complex organisms suggests that these structural units are likely to be important functional elements in large genomes. Hence, in this paper we perform a systematic comparison of exon-intron structure and GC content on all known genes in the human genome. Our in-silico analysis found that the GC content of introns and exons varies significantly depending on their length. On average, the first intron of a gene is significantly longer than other introns in the same gene. Our results also show that first introns and exons are more GC rich than last and internal. This study provides insight into the structure of eukaryotic genes. These results confirm and expand the previously identified regulatory potential of first exons and introns.


Subject(s)
Base Composition , Exons , Genome, Human , Introns , Cytosine , Guanine , Humans , Reproducibility of Results , Transcription, Genetic
20.
Proc Natl Acad Sci U S A ; 103(18): 6940-5, 2006 May 02.
Article in English | MEDLINE | ID: mdl-16632609

ABSTRACT

Recent large-scale genomic and evolutionary studies have revealed the small but detectable signature of weak selection on synonymous mutations during mammalian evolution, likely acting at the level of translational efficacy (i.e., translational selection). To investigate whether weak selection, and translational selection in particular, plays any role in shaping the fate of synonymous mutations that are present today in human populations, we studied genetic variation at the polymorphic level and patterns of evolution in the human lineage after human-chimpanzee separation. We find evidence that neutral mechanisms are influencing the frequency of polymorphic mutations in humans. Our results suggest a recent increase in mutational tendencies toward AT, observed in all isochores, that is responsible for AT mutations segregating at lower frequencies than GC mutations. In all, however, changes in mutational tendencies and other neutral scenarios are not sufficient to explain a difference between synonymous and noncoding mutations or a difference between synonymous mutations potentially advantageous or deleterious under a translational selection model. Furthermore, several estimates of selection intensity on synonymous mutations all suggest a detectable influence of weak selection acting at the level of translational selection. Thus, random genetic drift, recent changes in mutational tendencies, and weak selection influence the fate of synonymous mutations that are present today as polymorphisms. All of these features, neutral and selective, should be taken into account in evolutionary analyses that often assume constancy of mutational tendencies and complete neutrality of synonymous mutations.


Subject(s)
Mutation , Polymorphism, Genetic , Selection, Genetic , Animals , Base Composition , Biological Evolution , Humans , Pan troglodytes/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...