Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 124(7): 628-640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38158197

ABSTRACT

INTRODUCTION: Investigation of the molecular basis of inherited bleeding disorders (IBD) is mostly performed with gene panel sequencing. However, the continuous discovery of new related genes underlies the limitation of this approach. This study aimed to identify genetic variants responsible for IBD in pediatric patients using whole-exome sequencing (WES), and to provide a detailed description and reclassification of candidate variants. MATERIAL AND METHODS: WES was performed for 18 pediatric patients, and variants were filtered using a first-line list of 290 genes. Variant prioritization was discussed in a multidisciplinary team based on genotype-phenotype correlation, and segregation studies were performed with available family members. RESULTS: The study identified 22 candidate variants in 17 out of 18 patients (94%). Eleven patients had complete genotype-phenotype correlation, resulting in a diagnostic yield of 61%, 5 (28%) were classified as partially solved, and 2 (11%) remained unsolved. Variants were identified in platelet (ACTN1, ANKRD26, CYCS, GATA1, GFI1B, ITGA2, NBEAL2, RUNX1, SRC, TUBB1), bleeding (APOLD1), and coagulation (F7, F8, F11, VWF) genes. Notably, 9 out of 22 (41%) variants were previously unreported. Variant pathogenicity was assessed according to the American College of Medical Genetics and Genomics guidelines and reclassification of three variants based on family segregation evidence, resulting in the identification of 10 pathogenic or likely pathogenic variants, 6 variants of uncertain significance, and 6 benign or likely benign variants. CONCLUSION: This study demonstrated the high potential of WES in identifying rare molecular defects causing IBD in pediatric patients, improving their management, prognosis, and treatment, particularly for patients at risk of malignancy and/or bleeding due to invasive procedures.


Subject(s)
Blood Coagulation Disorders, Inherited , Exome Sequencing , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Child , Female , Male , Child, Preschool , Blood Coagulation Disorders, Inherited/genetics , Blood Coagulation Disorders, Inherited/diagnosis , Adolescent , Infant , Phenotype , Mutation , Pedigree , Genetic Variation
3.
Haemophilia ; 28(1): 125-137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34708896

ABSTRACT

INTRODUCTION: In several countries, molecular diagnosis of haemophilia A (HA) and B (HB) is hampered by a lack of resources for DNA analysis. The advent of next-generation sequencing (NGS) has enabled gene analysis at a reasonable cost. AIM: Describe a collaboration between Cuban and Spanish researchers to identify candidate variants and investigate the molecular epidemiology of 106 Cuban haemophilia patients using NGS. PATIENTS/METHODS: The molecular analysis protocol included well-established LR-PCR procedures to detect F8 inversions, NGS with a 30-gene panel to sequence F8 and F9, and multiplex ligation-dependent probe amplification to identify large structural variants. RESULTS: One-hundred and thirty-one candidate variants were identified along F8, F9, and VWF; 72 were unique and 28 (39%) had not been previously recorded. Putative variants were identified in 105/106 patients. Molecular characterization enabled confirmation and reclassification of: 90 HA (85%), 15 HB (14%), and one type 2N VWD (1%). Null variants leading to non-production of FVIII or FIX were common in severe HA (64%), moderate HA (74%), and severe HB (60%), whereas missense variants were frequent in mild HA (57%) and moderate or mild HB (83%). Additional variants in VWF were identified in 16 patients. CONCLUSION: This is the first description of the molecular epidemiology of HA and HB in Cuba. Variants identified in index cases will be of value for local implementation of familial studies and prenatal diagnosis using the molecular approaches available in Cuba. The results of this protocolled genetic study improved the accuracy of the clinical diagnosis and will facilitate management of these patients.


Subject(s)
Hemophilia A , Cuba/epidemiology , Factor VIII/genetics , Female , Hemophilia A/diagnosis , Hemophilia A/epidemiology , Hemophilia A/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation , Pregnancy , Technology
4.
Hum Gene Ther ; 32(19-20): 1210-1223, 2021 10.
Article in English | MEDLINE | ID: mdl-34498979

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disease caused by recessive mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase (TP). In this study, the efficient integration of a TYMP transgene into introns of the Tymp and Alb loci of hepatocytes in a murine model of MNGIE was achieved by the coordinated delivery and activity of CRISPR/Cas9 and a TYMP cDNA. CRISPR/Cas9 was delivered either as mRNA using lipid nanoparticle (LNP) or polymeric nanoparticle, respectively, or in an AAV2/8 viral vector; the latter was also used to package the TYMP cDNA. Insertion of the cDNA template downstream of the Tymp and Alb promoters ensured transgene expression. The best in vivo results were obtained using LNP carrying the CRISPR/Cas9 mRNAs. Treated mice showed a consistent long-term (1 year) reduction in plasma nucleoside (thymidine and deoxyuridine) levels that correlated with the presence of TYMP mRNA and functional enzyme in liver cells. In mice with an edited Alb locus, the transgene produced a hybrid Alb-hTP protein that was secreted, with supraphysiological levels of TP activity detected in the plasma. Equivalent results were obtained in mice edited at the Tymp locus. Finally, some degree of gene editing was found in animals treated only with AAV vectors containing the DNA templates, in the absence of nucleases, although there was no impact on plasma nucleoside levels. Overall, these results demonstrate the feasibility of liver-directed genome editing in the long-term correction of MNGIE, with several advantages over other methods.


Subject(s)
Gene Editing , Mitochondrial Encephalomyopathies , Animals , Disease Models, Animal , Liposomes , Mice , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/therapy , Nanoparticles , Thymidine Phosphorylase
SELECTION OF CITATIONS
SEARCH DETAIL
...