Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stereotact Funct Neurosurg ; : 1-6, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834047

ABSTRACT

INTRODUCTION: Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for drug-resistant tremor. The most frequent side effects are ataxia, gait disturbance, paresthesias, dysgeusia, and hemiparesis. Here, we report the first case of thalamic hand dystonia rapidly occurring after MRgFUS thalamotomy of the ventral intermediate nucleus (V.im). CASE PRESENTATION: MRgFUS thalamotomy was performed in a 60-year-old left-handed patient for his disabling medically refractory essential tremor. The intervention resulted in a marked reduction of his action tremor. However, the patient developed an unvoluntary abnormal posture in his left hand a few days after the procedure with difficulty holding a cigarette between his fingers. Brain MRI revealed the expected MRgFUS lesion within the right V.im as well as an extension of the lesion anteriorly to the V.im in the ventro-oralis nucleus. Tractography showed that the lesion disrupted the dentato-rubro-thalamic tract as expected with a lesion suppressing tremor. However, the lesion also was interrupted fibers connecting to the superior frontal and pre-central cortices (primary motor cortex, premotor cortex, and supplementary area). We hypothesized that the interventional MRgFUS thalamotomy was slightly off target, which induced a dysfunction within the cortico-striato-thalamo-cortical network and the cerebello-thalamo-cortical pathway reaching a sufficient threshold of basal ganglia/cerebellum circuitry interference to induce dystonia. CONCLUSION: This rare side effect emphasizes the risk of imbalance within the dystonia network (i.e., basal ganglia-cerebello-thalamo-cortical circuit) secondary to V.im thalamotomy.

2.
Front Neurol ; 14: 1224345, 2023.
Article in English | MEDLINE | ID: mdl-37808498

ABSTRACT

Objective: Friedreich ataxia (FA) neuropathology affects dorsal root ganglia, posterior columns in the spinal cord, the spinocerebellar tracts, and cerebellar dentate nuclei. The impact of the somatosensory system on ataxic symptoms remains debated. This study aims to better evaluate the contribution of somatosensory processing to ataxia clinical severity by simultaneously investigating passive movement and tactile pneumatic stimulation in individuals with FA. Methods: Twenty patients with FA and 20 healthy participants were included. All subjects underwent two 6 min block-design functional magnetic resonance imaging (fMRI) paradigms consisting of twelve 30 s alternating blocks (10 brain volumes per block, 120 brain volumes per paradigm) of a tactile oddball paradigm and a passive movement paradigm. Spearman rank correlation tests were used for correlations between BOLD levels and ataxia severity. Results: The passive movement paradigm led to the lower activation of primary (cSI) and secondary somatosensory cortices (cSII) in FA compared with healthy subjects (respectively 1.1 ± 0.78 vs. 0.61 ± 1.02, p = 0.04, and 0.69 ± 0.5 vs. 0.3 ± 0.41, p = 0.005). In the tactile paradigm, there was no significant difference between cSI and cSII activation levels in healthy controls and FA (respectively 0.88 ± 0.73 vs. 1.14 ± 0.99, p = 0.33, and 0.54 ± 0.37 vs. 0.55 ± 0.54, p = 0.93). Correlation analysis showed a significant correlation between cSI activation levels in the tactile paradigm and the clinical severity (R = 0.481, p = 0.032). Interpretation: Our study captured the difference between tactile and proprioceptive impairments in FA using somatosensory fMRI paradigms. The lack of correlation between the proprioceptive paradigm and ataxia clinical parameters supports a low contribution of afferent ataxia to FA clinical severity.

SELECTION OF CITATIONS
SEARCH DETAIL
...