Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 12(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37508247

ABSTRACT

The amount of antibiotics and personal care products entering local sewage systems and ultimately natural waters is increasing and raising concerns about long-term human health effects. We developed an adsorptive photocatalyst, Cu0.5Mn0.5Fe2O4 nanoparticles, utilizing co-precipitation and calcination with melamine, and quantified its efficacy in removing paraben and oxytetracycline (OTC). During melamine calcination, Cu0.5Mn0.5Fe2O4 recrystallized, improving material crystallinity and purity for the adsorptive-photocatalytic reaction. Kinetic experiments showed that all four parabens and OTC were removed within 120 and 45 min. We found that contaminant adsorption and reaction with active radicals occurred almost simultaneously with the photocatalyst. OTC adsorption could be adequately described by the Brouers-Sotolongo kinetic and Freundlich isotherm models. OTC photocatalytic degradation started with a series of reactions at different carbon locations (i.e., decarboxamidation, deamination, dehydroxylation, demethylation, and tautomerization). Further toxicity testing showed that Zea mays L. and Vigna radiata L. shoot indexes were less affected by treated water than root indexes. The Zea mays L. endodermis thickness and area decreased considerably after exposure to the 25% (v/v)-treated water. Overall, Cu0.5Mn0.5Fe2O4 nanoparticles exhibit a remarkable adsorptive-photocatalytic performance for the degradation of tested antibiotics and personal care products.

2.
Sci Total Environ ; 892: 164652, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37295514

ABSTRACT

A challenge to successfully implementing an injection-based remedial treatment in aquifers is to ensure that the oxidative reaction is efficient and lasts long enough to contact the contaminated plume. Our objective was to determine the efficacy of zinc ferrite nanocomposites (ZnFe2O4) and sulfur-containing reductants (SCR) (i.e., dithionite; DTN and bisulfite; BS) to co-activate persulfate (S2O82-; PS) and treat herbicide-contaminated water. We also evaluated the ecotoxicity of the treated water. While both SCRs delivered excellent PS activation in a 1:0.4 ratio (PS:SCR), the reaction was relatively short-lived. By including ZnFe2O4 in the PS/BS or PS/DTN activations, herbicide degradation rates dramatically increased by factors of 2.5 to 11.3. This was due to the SO4- and OH reactive radical species that formed. Radical scavenging experiments and ZnFe2O4 XPS spectra results revealed that SO4- was the dominant reactive species that originated from S(IV)/PS activation in solution and from the Fe(II)/PS activation that occurred on the ZnFe2O4 surface. Based on liquid chromatography mass spectrometry (LC-MS), atrazine and alachlor degradation pathways are proposed that involve both dehydration and hydroxylation. In 1-D column experiments, five different treatment scenarios were run using 14C-labeled and unlabeled atrazine, and 3H2O to quantify changes in breakthrough curves. Our results confirmed that ZnFe2O4 successfully prolonged the PS oxidative treatment despite the SCR being completely dissociated. Toxicity testing showed treated 14C-atrazine was more biodegradable than the parent compound in soil microcosms. Post-treatment water (25 %, v/v) also had less impact on both Zea Mays L. and Vigna radiata L. seedling growth, but more impact on root anatomies, while ≤4 % of the treated water started to exert cytotoxicity (<80 % viability) on ELT3 cell lines. Overall, the findings confirm that ZnFe2O4/SCR/PS reaction is efficient and relatively longer lasting in treating herbicide-contaminated groundwater.


Subject(s)
Ferric Compounds , Groundwater , Herbicides , Reducing Agents , Sulfur Compounds , Water Pollutants, Chemical , Water Purification , Zinc Compounds , Herbicides/chemistry , Herbicides/metabolism , Groundwater/chemistry , Zinc Compounds/chemistry , Sulfur Compounds/chemistry , Reducing Agents/chemistry , Ferric Compounds/chemistry , Atrazine/chemistry , Atrazine/metabolism , Seedlings/drug effects , Seedlings/growth & development , Cell Line , Environmental Restoration and Remediation , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Nanostructures/chemistry , Water Purification/methods , Cell Survival/drug effects
3.
J Environ Manage ; 318: 115463, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35724571

ABSTRACT

Efforts to improve water quality of eutrophic ponds often involve implementing changes to watershed management practices to reduce external nutrient loads. While this is required for long-term recovery and prevention, eutrophic conditions are often sustained through the recycling of internal nutrients already present within the waterbody. In particular, internal phosphorus bound to organic material and adsorbed to sediment has the potential to delay lake recovery for decades. Thus, pond and watershed management techniques are needed that not only reduce external nutrient loading but also mitigate the effects of internal nutrients already present. Therefore, our objective was to demonstrate a biological and chemical approach to remove and sequester nutrients present and entering an urban retention pond. A novel biological and chemical management technique was designed by constructing a 37 m2 (6.1 m × 6.1 m) floating treatment wetland coupled with a slow-release lanthanum composite inserted inside an airlift pump. The floating treatment wetland promoted microbial denitrification and plant uptake of nitrogen and phosphorus, while the airlift pump slowly released lanthanum to the water column over the growing season to reduce soluble reactive phosphorus. The design was tested at the microcosm and field scales, where nitrate-N and phosphate-P removal from the water column was significant (α = 0.05) at the microcosm scale and observed at the field scale. Two seasons of field sampling showed both nitrate-N and phosphate-P concentrations were reduced from 50 µg L-1 in 2020 to <10 µg L-1 in 2021. Load calculations of incoming nitrate-N and phosphate-P entering the retention pond from the surrounding watershed indicate the presented biological-chemical treatment is sustainable and will minimize the effects of nutrient loading from nonpoint source pollution.


Subject(s)
Water Pollutants, Chemical , Water Quality , Eutrophication , Lanthanum , Nitrates , Nitrogen/analysis , Phosphates , Phosphorus/analysis , Ponds , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 141: 265-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26291912

ABSTRACT

Ozone (O3) is a chemical oxidant capable of transforming polycyclic aromatic hydrocarbons (PAHs) in urban runoff within minutes but complete oxidation to CO2 can take days to weeks. We developed and tested a flow-through system that used ozone to quickly transform PAHs in a runoff stream and then removed the ozone-transformed PAHs via adsorption to carbon nano-onions (CNOs). To quantify the efficacy of this approach, (14)C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 unlabeled PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained CNOs to adsorb the ozone-transformed PAHs and allowed clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, biodegradable products back into solution. Control treatments confirmed that parent PAH structures (i.e., non-ozonated) were not biologically degraded following CNO adsorption and that O3-transformed PAHs were not released from the CNOs in the absence of bacteria. These results support the combined use of ozone, carbon nano-onions with subsequent biological degradation as a means of removing PAHs from urban runoff or a commercial waste stream.


Subject(s)
Carbon/chemistry , Nanoparticles/chemistry , Ozone/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biodegradation, Environmental , Fullerenes/chemistry , Graphite/chemistry , Microbial Consortia , Polycyclic Aromatic Hydrocarbons/chemistry , Surface Properties , Urbanization , Water Pollutants, Chemical/chemistry
5.
Chemosphere ; 89(6): 680-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22784864

ABSTRACT

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 µg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers.


Subject(s)
Groundwater/chemistry , Potassium Permanganate/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Aluminum Silicates/chemistry , Clay , Environmental Restoration and Remediation , Oxidation-Reduction , Paraffin/chemistry , Refuse Disposal
6.
Environ Sci Technol ; 45(8): 3643-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21452829

ABSTRACT

The chemical oxidant permanganate (MnO(4)(-)) has been shown to effectively transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at both the laboratory and field scales. We treated RDX with MnO(4)(-) with the objective of quantifying the effects of pH and temperature on destruction kinetics and determining reaction rates. A nitrogen mass balance and the distribution of reaction products were used to provide insight into reaction mechanisms. Kinetic experiments (at pH ∼ 7, 25 °C) verified that RDX-MnO(4)(-) reaction was first-order with respect to MnO(4)(-) and initial RDX concentration (second-order rate: 4.2 × 10(-5) M(-1) s(-1)). Batch experiments showed that choice of quenching agents (MnSO(4), MnCO(3), and H(2)O(2)) influenced sample pH and product distribution. When MnCO(3) was used as a quenching agent, the pH of the RDX-MnO(4)(-) solution was relatively unchanged and N(2)O and NO(3)(-) constituted 94% of the N-containing products after 80% of the RDX was transformed. On the basis of the preponderance of N(2)O produced under neutral pH (molar ratio N(2)O/NO(3) ∼ 5:1), no strong pH effect on RDX-MnO(4)(-) reaction rates, a lower activation energy than the hydrolysis pathway, and previous literature on MnO(4)(-) oxidation of amines, we propose that RDX-MnO(4)(-) reaction involves direct oxidation of the methylene group (hydride abstraction), followed by hydrolysis of the resulting imides, and decarboxylation of the resulting carboxylic acids to form N(2)O, CO(2), and H(2)O.


Subject(s)
Explosive Agents/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Triazines/chemistry , Water Pollutants, Chemical/chemistry , Explosive Agents/analysis , Kinetics , Oxidation-Reduction , Triazines/analysis , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 79(8): 865-72, 2010 May.
Article in English | MEDLINE | ID: mdl-20226494

ABSTRACT

Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated Fe(II) phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron Fe(II)/Fe(III) minerals. This was accomplished by quantifying the effects of initial Fe(II) concentration, pH, and the presence of aquifer solids (Fe(III) phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing Fe(II) concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous Fe(II) during HE treatment under anaerobic conditions. Geochemical modeling also predicted Fe(II) activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated Fe(II)/Fe(III) minerals in aqueous Fe(II) solutions play in the transformation of high explosives.


Subject(s)
Azocines/chemistry , Environmental Restoration and Remediation/methods , Explosive Agents/chemistry , Iron/chemistry , Triazines/chemistry , Trinitrotoluene/chemistry , Cations/chemistry , Hydrogen-Ion Concentration , Models, Chemical
8.
Environ Sci Technol ; 41(4): 1200-5, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593719

ABSTRACT

Reductive dehalogenation of chlorinated compounds is the most important process occurring within the zerovalent iron (Fe0) barrier. The relative reaction rates of individual halocarbons with Fe0 can vary considerably. This variability has been the stimulus for using various chemical descriptors for a priori predictions of transformation rates via linear free-energy relationships (LFERs). Our objective was to determine the efficacy of four molecular descriptors to describe the transformation rates of three chloromethanes, three chloroethanes, and six chloropropanes by Fe0. This was accomplished by generating an internally consistent set of rate constants under controlled environmental conditions (16 degrees C, anaerobic) and regressing the surface-area normalized rate constants (k(SA)) against (i) energy of the lowest unoccupied molecular orbital (E(LUMO)); (ii) vertical attachment energies (VAE); (iii) thermal electron attachment rate constants; and (iv) the molar response from a commercial electron capture detector (ECD). Results showed good correlations between k(SA)'s and all four descriptors (r2: 0.72-1.0), but a separate trend line was required for the chloromethanes and the chloro- ethanes/ propanes. Given the availability and ease with which ECD response can be obtained, this physical measurement may provide a practical means of determining relative rates of reactivity of various halocarbons in permeable reactive iron barriers.


Subject(s)
Chlorine/chemistry , Hydrocarbons, Chlorinated/chemistry , Iron/chemistry , Gases , Water Pollutants, Chemical/chemistry
9.
Environ Sci Technol ; 40(9): 3043-9, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16719109

ABSTRACT

The prevalent use of chloroacetanilide herbicides has resulted in nonpoint contamination of some groundwater and surface water. We determined the efficacy of dithionite-treated sediment and soils to transform chloroacetanilides. When used alone, dithionite rapidly dechlorinates chloroacetanilides in water, with the following order of reactivity: propachlor > alachlor > acetochlor > metolachlor. Stoichiometric release of chloride occurs during reaction with dithionite, and thiosulfate herbicide derivatives are produced. Treating aquifer sediment with dithionite reduces native Fe(lII), creating a redox barrier of Fe(ll)-bearing minerals and surface-bound Fe(ll). Washing the reduced sediment (buffered with citrate-bicarbonate) with oxygen-free water removed Fe(ll) and excess dithionite and no alachlor transformation was observed. In contrast, a dithionite-treated surface soil, rich in clay and iron, effectively dechlorinated alachlor after washing. Exposing alachlor to aquifer sediment treated with dithionite in potassium carbonate buffer (pH 8.5-9.0) produced dechlorinated alachlor as the major degradation product. Our results provide proof-of-concept that dechlorination of chloroacetanilide herbicides by dithionite and dithionite-treated aquifer sediment and soil is a remediation option in natural environments where iron-bearing minerals are abundant.


Subject(s)
Acetamides/chemistry , Dithionite/pharmacology , Herbicides/chemistry , Soil Pollutants/analysis , Acetamides/analysis , Adsorption , Buffers , Carbonates/chemistry , Chlorine/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Oxidation-Reduction , Potassium/chemistry , Water Pollutants
10.
J Phys Chem A ; 110(13): 4363-8, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16571039

ABSTRACT

Electron capture detectors (ECDs) are widely used in gas chromatography to detect electronegative compounds. In this work, we examine the connections between the ECD response and the cross sections for dissociative electron attachment (DEA) determined from low energy electron beam studies in the chloroalkane family, stressing in particular the role of temporary anion state energies. We show that attachment rate coefficients computed from these cross sections are well correlated with ECD response, and that the latter decreases exponentially with increasing energies of the lowest anion states. ECD measurements are also carried out in monochloroalkanes substituted with unsaturated ethenyl and phenyl moieties, and the response is shown to depend strongly on the mixing between the unsaturated pi* and the C-Cl sigma* temporary anions as exhibited by the vertical attachment energies (VAEs) of these states. The results show good correlations between the chloroalkene and phenyl chloride ECD responses and the VAEs for the mixed states.

11.
Environ Sci Technol ; 39(24): 9683-8, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16475352

ABSTRACT

Mixtures of energetic compounds pose a remediation problem for munitions-contaminated soil. Although treatment with zerovalent iron (Fe0) can be effective, RDX and TNT are more readily destroyed than HMX. Adding didecyldimethylammonium bromide (didecyl) at 2% w/v with 3% (w/v) Fe0 to a 20% slurry of Los Alamos National Laboratory soil containing solid-phase HMX (45 000 mg/kg) resulted in >80% destruction within 6 days. Because the HMX concentration did not increase in solution and the didecyl equilibrium concentration was well below the critical micelle concentration, we conclude thatthe solution primarily contained didecyl monomers. The adsorption isotherm for didecyl on iron is consistent with electrostatic adsorption of monomers and some hydrophobic partitioning at low equilibrium concentrations. Fe0 pretreated with didecyl was superior to Fe0 alone or mixed with didecyl in removing HMX from solution, but it was less effective than Fe0 + didecyl when solid-phase HMX was present. Reseeding HMX to mimic dissolution indicated an initial high reactivity of didecyl-pretreated Fe0, but the reaction slowed with each HMX addition. In contrast, reaction rates were lower but reactivity was maintained when Fe0 and didecyl were added together and didecyl was included in fresh HMX solutions. Destruction of solid-phase HMX requires low didecyl concentrations in solution so that hydrophobic patches are maintained on the iron surface.


Subject(s)
Azocines/chemistry , Azocines/classification , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/classification , Iron/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Adsorption , Azocines/toxicity , Heterocyclic Compounds, 1-Ring/toxicity , Hydrophobic and Hydrophilic Interactions , Industrial Waste , Microscopy, Electron, Scanning , Soil Pollutants , Static Electricity , Time Factors
12.
Environ Sci Technol ; 37(22): 5219-27, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14655711

ABSTRACT

Electron transfer from zerovalent iron (Fe0) to targeted contaminants is affected by initial Fe0 composition, the oxides formed during corrosion, and surrounding electrolytes. We previously observed enhanced metolachlor destruction by Fe0 when iron or aluminum salts were present in the aqueous matrix and Eh/pH conditions favored formation of green rusts. To understand these enhanced destruction rates, we characterized changes in Fe0 composition during treatment of metolachlor with and without iron and aluminum salts. Raman microspectroscopy and X-ray diffraction (XRD) indicated that the iron source was initially coated with a thin layer of magnetite (Fe3O4), maghemite (gamma-Fe2O3), and wüstite (FeO). Time-resolved analysis indicated that akaganeite (beta-FeOOH) was the dominant oxide formed during Fe0 treatment of metolachlor. Goethite (alpha-FeOOH) and some lepidocrocite (gamma-FeOOH) formed when Al2(SO4)3 was present, while goethite and magnetite (Fe3O4) were identified in Fe0 treatments containing FeSO4. Although conditions favoring formation of sulfate green rust (GR(II); Fe6(OH)12SO4) facilitated Fe0-mediated dechlorination of metolachlor, only adsorption was observed when GR(II) was synthesized (without Fe0) in the presence of metolachlor and Eh/pH changed to favor Fe(III)oxyhydroxide or magnetite formation. In contrast, dechlorination occurred when magnetite or natural goethite was amended with Fe(II) (as FeSO4) at pH 8 and continued as long as additional Fe(II) was provided. While metolachlor was not dechlorinated by GR(II) itself during a 48-h incubation, the GR(II) provided a source of Fe(II) and produced magnetite (and other oxide surfaces) that coordinated Fe(II), which then facilitated dechlorination.


Subject(s)
Acetamides/analysis , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Soil Pollutants/analysis , Water Pollution/prevention & control , Aluminum Compounds/chemistry , Models, Theoretical , Oxidation-Reduction
13.
J Environ Qual ; 32(4): 1306-15, 2003.
Article in English | MEDLINE | ID: mdl-12931886

ABSTRACT

Under anoxic conditions, zerovalent iron (Fe(0)) reduces nitrate to ammonium and magnetite (Fe3O4) is produced at near-neutral pH. Nitrate removal was most rapid at low pH (2-4); however, the formation of a black oxide film at pH 5 to 8 temporarily halted or slowed the reaction unless the system was augmented with Fe(2+), Cu(2+), or Al(3+). Bathing the corroding Fe(0) in a Fe(2+) solution greatly enhanced nitrate reduction at near-neutral pH and coincided with the formation of a black precipitate. X-ray diffractometry and scanning electron microscopy confirmed that both the black precipitate and black oxide coating on the iron surface were magnetite. In this system, ferrous iron was determined to be a partial contributor to nitrate removal, but nitrate reduction was not observed in the absence of Fe(0). Nitrate removal was also enhanced by augmenting the Fe(0)-H2O system with Fe(3+), Cu(2+), or Al(3+) but not Ca(2+), Mg(2+), or Zn(2+). Our research indicates that a magnetite coating is not a hindrance to nitrate reduction by Fe(0), provided sufficient aqueous Fe(2+) is present in the system.


Subject(s)
Iron/chemistry , Nitrates/chemistry , Water Pollution/prevention & control , Cations , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Iron/analysis , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxides/analysis , Oxides/chemistry , Soil Pollutants , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...