Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 632, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876995

ABSTRACT

As water scarcity becomes the new norm in the Western United States, states such as California have increased their efforts to improve water resilience. Achieving water security under climate change, population growth, and urbanization requires an integrated multi-sectoral approach, where adaptation strategies combine supply and demand management interventions. Yet, most studies consider supply-side and demand-side management strategies separately. Water conservation efforts are mainly driven by policy requirements and publicly available data to assess the effectiveness of demand- and supply-side management policies is often hard to find and unstructured. Here we present CaRDS - the statewide California Residential water Demand and Supply open dataset. CaRDS encompasses nine years (2013-2021) of monthly water supply and demand time series for 404 water suppliers in California, USA, compiled from different open-access data sources. Access to detailed temporal and spatial water supply operations and demands at the state-level can be useful to researchers and practitioners to realize applications such as evaluating the effectiveness of water conservation policies and discovering regional differences in water resilience measures.

2.
Water Res ; 230: 119500, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36640613

ABSTRACT

A detailed characterization of residential water consumption is essential for ensuring urban water systems' capability to cope with changing water resources availability and water demands induced by growing population, urbanization, and climate change. Several studies have been conducted in the last decades to investigate the characteristics of residential water consumption with data at a sufficiently fine temporal resolution for grasping individual end uses of water. In this paper, we systematically review 114 studies to provide a comprehensive overview of the state-of-the-art research about water consumption at the end-use level. Specifically, we contribute with: (1) an in-depth discussion of the most relevant findings of each study, highlighting which water end-use characteristics were so far prioritized for investigation in different case studies and water demand modelling and management studies from around the world; and (2) a multi-level analysis to qualitatively and quantitatively compare the most common results available in the literature, i.e. daily per capita end-use water consumption, end-use parameter average values and statistical distributions, end-use daily profiles, end-use determinants, and considerations about efficiency and diffusion of water-saving end uses. Our findings can support water utilities, consumers, and researchers (1) in understanding which key aspects of water end uses were primarily investigated in the last decades; and (2) in exploring their main features considering different geographical, cultural, and socio-economic regions of the world.


Subject(s)
Urbanization , Water , Water Supply , Water Resources
3.
Environ Sci Technol Lett ; 7(9): 683-689, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-37566299

ABSTRACT

Drastic changes in electricity demand have been observed since March 2020 in Europe, after several countries implemented lockdown-like measures to contain the spread of COVID-19. We investigate the sensitivity of the electricity-water nexus in the European electric grid to large-scale behavior changes during the COVID-19 pandemic lockdown-like measures. We quantify changes in the blue virtual water trade between five European countries heavily affected by COVID-19 during the same period. As a result, the consumptive water footprint of thermal power plant operations in Europe decreased by 1.77 × 106 m3/day during the COVID-19 lockdowns, compared to the average of the past four years. Reduced electricity demand accounts for 16% (0.29 × 106 m3/day) of the decrease, while the remainder is attributable to changes in the electricity generation mix toward less water-intensive technologies before 2020 and during lockdowns. Virtual water transfers associated with electricity were also affected: Italy, a hotspot of COVID-19, reduced its water footprint by 8.4% and its virtual water imports by 70,700 m3/day. Germany and France slightly reduced their domestic water footprint of electricity but increased their virtual water imports. These findings improve our understanding of the impacts of large-scale behavior and technological changes to the European electricity-water nexus.

SELECTION OF CITATIONS
SEARCH DETAIL
...