Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 33(14): ar145, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36287824

ABSTRACT

The contractile ring must anchor to the plasma membrane and cell wall to transmit its tension. F-BAR domain containing proteins including Imp2p and Cdc15p in fission yeast are likely candidate anchoring proteins based on their mutant phenotypes. Cdc15p is a node component, links the actin bundle to the plasma membrane, recruits Bgs1p to the division plane, prevents contractile ring sliding, and contributes to the stiffness of the contractile ring. Less is known about Imp2p. We found that similarly to Cdc15p, Imp2p contributes to the stiffness of the contractile ring and assembles into protein clusters. Imp2p clusters contain approximately eight Imp2p dimers and depend on the actin network for their stability at the division plane. Importantly, Imp2p and Cdc15p reciprocally affect the amount of each other in the contractile ring, indicating that the two proteins influence each other during cytokinesis, which may partially explain their similar phenotypes.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytokinesis , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
2.
PLoS One ; 15(11): e0242361, 2020.
Article in English | MEDLINE | ID: mdl-33227000

ABSTRACT

We use a 785 nm shifted excitation Raman difference (SERDS) technique to measure the Raman spectra of the conidia of 10 mold species of especial toxicological, medical, and industrial importance, including Stachybotrys chartarum, Penicillium chrysogenum, Aspergillus fumigatus, Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, and others. We find that both the pure Raman and fluorescence signals support the hypothesis that for an excitation wavelength of 785 nm the Raman signal originates from the melanin pigments bound within the cell wall of the conidium. In addition, the major features of the pure Raman spectra group into profiles that we hypothesize may be due to differences in the complex melanin biosynthesis pathways. We then combine the Raman spectral data with neural network models to predict species classification with an accuracy above 99%. Finally, the Raman spectral data of all species investigated is made freely available for download and use.


Subject(s)
Spectrum Analysis, Raman/methods , Spores, Fungal/chemistry , Spores, Fungal/classification , Allergens/analysis , Antigens, Fungal/analysis , Aspergillus , Aspergillus fumigatus , Penicillium chrysogenum , Spores, Fungal/metabolism , Stachybotrys
3.
Fungal Genet Biol ; 141: 103412, 2020 08.
Article in English | MEDLINE | ID: mdl-32445863

ABSTRACT

During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 µm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.


Subject(s)
Amino Acid Motifs/genetics , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Hyphae/genetics , Aspergillus nidulans/pathogenicity , Cell Membrane/genetics , Cell Polarity/genetics , Endocytosis/genetics , Exocytosis/genetics , Fungal Proteins/isolation & purification , Hyphae/pathogenicity , Peptides/genetics , Saccharomyces cerevisiae/genetics
4.
Sci Rep ; 10(1): 5428, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214112

ABSTRACT

Successful approaches to identification and/or biological characterization of fungal specimens through Raman spectroscopy may require the determination of the molecular origin of the Raman response as well as its separation from the background fluorescence. The presence of fluorescence can interfere with Raman detection and is virtually impossible to avoid. Fluorescence leads to a multiplicity of problems: one is noise, while another is "fake" spectral structure that can easily be confused for spontaneous Raman peaks. One solution for these problems is Shifted Excitation Raman Difference Spectroscopy (SERDS), in which a tunable light source generates two spectra with different excitation frequencies in order to eliminate fluorescence from the measured signal. We combine a SERDS technique with genetic breeding of mutant populations and demonstrate that the Raman signal from Aspergillus nidulans conidia originates in pigment molecules within the cell wall. In addition, we observe unambiguous vibrational fine-structure in the fluorescence response at room temperature. We hypothesize that the vibrational fine-structure in the fluorescence results from the formation of flexible, long-lived molecular cages in the bio-polymer matrix of the cell wall that partially shield target molecules from the immediate environment and also constrain their degrees of freedom.


Subject(s)
Aspergillus nidulans/metabolism , Aspergillus nidulans/physiology , Cell Wall/metabolism , Cell Wall/physiology , Fluorescence , Pigments, Biological/metabolism , Spectrum Analysis, Raman/methods , Spores, Fungal/physiology , Temperature
5.
Mycology ; 12(1): 1-9, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-33628604

ABSTRACT

Filamentous fungi grow by adding cell wall and membrane exclusively at the apex of tubular structures called hyphae. Growth was previously believed to occur only through exocytosis at the Spitzenkörper, an organised body of secretory macro- and microvesicles found only in growing hyphae. More recent work has indicated that an area deemed the sub-apical collar is enriched for endocytosis and is also required for hyphal growth. It is now generally believed that polarity of filamentous fungi is achieved through the balancing of the processes of endocytosis and exocytosis at these two areas. This review is an update on the current progress and understanding surrounding the occurrence of endocytosis and its spatial regulation as they pertain to growth and pathogenicity in filamentous fungi.

6.
Sci Rep ; 9(1): 1789, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741950

ABSTRACT

Coherent Anti-Stokes Raman Spectroscopy (CARS) is performed on single spores (conidia) of the fungus Aspergillus nidulans in order to establish a baseline measurement for fungal spores. Chemical maps of single spores are generated and spectral differentiation between the cell wall and the cytoplasm is achieved. Principal Component Analysis of the measured spectra is then completed as a means to quantify spore heterogeneity. Applications range from the quick and accurate diagnosis of public health concerns to real-time agricultural and environmental sensing of fungal symbionts and pathogens.


Subject(s)
Aspergillus nidulans/physiology , Spectrum Analysis/methods , Spores, Fungal/chemistry , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...