Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26212769

ABSTRACT

In addition to 'traditional' multi-residue and multi-contaminant multiple reaction monitoring (MRM) mass spectrometric techniques devoted to quantifying a list of targeted compounds, the global food industry requires non-targeted methods capable of detecting other possible potentially hazardous compounds. Ultra-high-performance liquid chromatography combined with a single-stage Orbitrap high-resolution mass spectrometer (UHPLC-HRMS Exactive™-Orbitrap Technology) was successfully exploited for the complete selective and quantitative determination of 33 target compounds within three major cross categories (pesticides, antibiotics and mycotoxins) in bakery matrices (specifically milk, wheat flour and mini-cakes). Resolution was set at 50 000 full width at half maximum (FWHM) to achieve the right compromise between an adequate scan speed and selectivity, allowing for the limitations related to the necessary generic sample preparation approach. An exact mass with tolerance of 5 ppm and minimum peak threshold of 10 000 units were fixed as the main identification conditions, including retention time and isotopic pattern as additional criteria devoted to greatly reducing the risk of false-positive findings. The full validation for all the target analytes was performed: linearity, intermediate repeatability and recovery (28 analytes within 70-120%) were positively assessed; furthermore, limits of quantification between 5 and 100 µg kg(-1) (with most of the analytes having a limit of detection below 6 µg kg(-1)) indicate good performance, which is compatible with almost all the regulatory needs. Naturally contaminated and fortified mini-cakes, prepared through combined use of industrial and pilot plant production lines, were analysed at two different concentration levels, obtaining good overall quantitative results and providing preliminary indications of the potential of full-scan HRMS cluster analysis. The effectiveness of this analytical approach was also tested in terms of the formulation of hypotheses for the identification of other analytes not initially targeted which can have toxicological implications (e.g. 3-acetyl-deoxynivalenol and deoxynivalenol-3-glucoside), opening a window on retrospective investigation perspectives in food safety laboratories.


Subject(s)
Anti-Bacterial Agents/analysis , Food Analysis/methods , Food Contamination/analysis , Mass Spectrometry/methods , Mycotoxins/analysis , Pesticides/analysis , Animals , Bread/analysis , Chromatography, High Pressure Liquid , Cluster Analysis , Flour/analysis , Food Analysis/instrumentation , Food Contamination/prevention & control , Food Safety , Glucosides/analysis , Humans , Limit of Detection , Mass Spectrometry/instrumentation , Metabolomics/instrumentation , Metabolomics/methods , Milk/chemistry , Phenols/analysis , Trichothecenes/analysis , Veterinary Drugs/analysis
2.
J Mass Spectrom ; 47(9): 1232-41, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22972791

ABSTRACT

In the food industry, it is frequently necessary to check the quality of an ingredient to decide whether to use it in production and/or to have an idea of the final possible contamination of the finished product. The current need to quickly separate and identify relevant contaminants within different classes, often with legal residue limits on the order of 1-100 µg kg(-1), has led to the need for more effective analytical methods. With thousands of organic compounds present in complex food matrices, the development of new analytical solutions leaned towards simplified extraction/clean-up procedures and chromatography coupled with mass spectrometry. Efforts must also be made regarding the instrumental phase to overcome sensitivity/selectivity limits and interferences. For this purpose, high-resolution full scan analysis in mass spectrometry is an interesting alternative to the traditional tandem mass approach. A fast method for extracting and purifying bakery matrices was therefore developed and combined with the exploitation of ultra-high-pressure liquid chromatography (UHPLC) coupled to a Orbitrap Exactive™ high-resolution mass spectrometer (HRMS). Extracts of blank, naturally contaminated and fortified minicakes, prepared through a combined use of industrial and pilot plant production lines, were analyzed at different concentration levels (1-100 µg kg(-1)) of various contaminants: a limit of detection at 10 µg kg(-1) was possible for most of the analytes within all the categories analyzed, including pesticides, aflatoxins, trichothecene toxins and veterinary drugs. The application of accurate mass targeted screening described in this article demonstrates that current single-stage HRMS analytical instrumentation is well equipped to meet the challenges posed by chemical contaminants in the screening of both bakery raw materials and finished products.


Subject(s)
Chromatography, Liquid/methods , Food Analysis/methods , Mass Spectrometry/methods , Mycotoxins/analysis , Pesticides/analysis , Veterinary Drugs/analysis , Reproducibility of Results , Sensitivity and Specificity
3.
J Mass Spectrom ; 45(9): 996-1002, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20814904

ABSTRACT

Epoxidized soybean oil (ESBO) is used as an authorized plasticizer and a stabilizer for plastic polymers such as poly(vinyl chloride) (PVC). Recently, however, there has been a concrete effort devoted to its substitution for other plasticizers such as polyadipates. ESBO is exploited particularly in food closure gaskets for metal lids used to seal glass jars and bottles. The closure gaskets form an airtight seal necessary to prevent microbiological contamination. Thus, there are potential uses for food sterilization and storage. Additionally, the main pathway of PVC degradation involves the elimination of HCl, which can react with the epoxy groups of ESBO to give mono-, polychlorohydrins and/or other cyclic derivatives. The European Food Safety Authority noted that not enough analytical and toxicological data exist to express a formal opinion on the significance for the health effects of such derivatives. At present in the scientific literature, there are only a few indicative results of direct measurements of ESBO derivatives and there are no official analytical methods available for the determination of chlorohydrins directly from foodstuffs. This study presents the first example of the analysis of commercial food sauces for the detection of ESBO-chlorohydrins (as methyl esters). The results are obtained by a dedicated development of an ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method. Sample preparation was based on the following main steps: organic extraction, transesterification and solid-phase extraction clean up. In particular, four isomers for 18-E-OHCl chlorohydrin and eight isomers for 18-2OHCl chlorohydrin were separated and identified. Different food sauces samples closed in glass jars with twist-off caps were subjected to qualitative determination, which yielded positive results for 18-E-OHCl, whereas no traces of 18-2OHCl were found.


Subject(s)
Chlorohydrins/analysis , Chromatography, High Pressure Liquid/methods , Food Analysis/methods , Soybean Oil/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chlorohydrins/chemistry , Chlorohydrins/isolation & purification , Food Packaging , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...