Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mov Disord ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685873

ABSTRACT

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

2.
Orphanet J Rare Dis ; 19(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167094

ABSTRACT

BACKGROUND: Ornithine Transcarbamylase Deficiency (OTCD) is an X-linked urea cycle disorder characterized by acute hyperammonemic episodes. Hemizygous males are usually affected by a severe/fatal neonatal-onset form or, less frequently, by a late-onset form with milder disease course, depending on the residual enzymatic activity. Hyperammonemia can occur any time during life and patients could remain non- or mis-diagnosed due to unspecific symptoms. In heterozygous females, clinical presentation varies based on the extent of X chromosome inactivation. Maternal transmission in X-linked disease is the rule, but in late-onset OTCD, due to the milder phenotype of affected males, paternal transmission to the females is possible. So far, father-to-daughter transmission of OTCD has been reported only in 4 Japanese families. RESULTS: We identified in 2 Caucasian families, paternal transmission of late-onset OTCD with severe/fatal outcome in affected males and 1 heterozygous female. Furthermore, we have reassessed the pedigrees of other published reports in 7 additional families with evidence of father-to-daughter inheritance of OTCD, identifying and listing the family members for which this transmission occurred. CONCLUSIONS: Our study highlights how the diagnosis and pedigree analysis of late-onset OTCD may represent a real challenge for clinicians. Therefore, the occurrence of paternal transmission in OTCD should not be underestimated, due to the relevant implications for disease inheritance and risk of recurrence.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Male , Infant, Newborn , Humans , Female , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Nuclear Family , Hyperammonemia/genetics , Heterozygote , Fathers , Ornithine Carbamoyltransferase/genetics
3.
Orphanet J Rare Dis ; 18(1): 358, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974207

ABSTRACT

BACKGROUND: Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS: Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS: X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS: In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.


Subject(s)
Adrenoleukodystrophy , Zellweger Syndrome , Humans , Child , Adolescent , Child, Preschool , Young Adult , Adult , Adrenoleukodystrophy/genetics , Zellweger Syndrome/metabolism , Leukocytes, Mononuclear/metabolism , Peroxisomes/metabolism , Oxidation-Reduction
4.
J Pediatr Endocrinol Metab ; 36(9): 873-878, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37427576

ABSTRACT

OBJECTIVES: Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a severe urea cycle disorder. Patients can present with hyperammonemic coma in the first days of life. Treatment includes nitrogen scavengers, reduced protein intake and supplementation with L-arginine and/or L-citrulline. N-carbamoyl glutamate (NCG) has been hypothesized to stimulate the residual CPS1 function, although only few patients are reported. CASE PRESENTATION: We report a patient with neonatal-onset CPS1 deficiency who received NCG in association with nitrogen scavenger and L-citrulline. The patient carried the novel variants CPS1-c.2447A>G p.(Gln816Arg) and CPS1-c.4489T>C p.(Tyr1497His). The latter is localized in the C-terminal allosteric domain of the protein, and is implicated in the binding of the natural activator N-acetyl-L-glutamate. NCG therapy was effective in controlling ammonia levels, allowing to increase the protein intake. CONCLUSIONS: Our data show that the response to NCG can be indicated based on the protein structure. We hypothesize that variants in the C-terminal domain may be responsive to NCG therapy.


Subject(s)
Carbamoyl-Phosphate Synthase I Deficiency Disease , Urea Cycle Disorders, Inborn , Humans , Infant, Newborn , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/therapy , Citrulline/therapeutic use , Glutamic Acid
5.
Int J Neonatal Screen ; 9(2)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37367212

ABSTRACT

Fabry disease is an X-linked progressive lysosomal disorder, due to α-galactosidase A deficiency. Patients with a classic phenotype usually present in childhood as a multisystemic disease. Patients presenting with the later onset subtypes have cardiac, renal and neurological involvements in adulthood. Unfortunately, the diagnosis is often delayed until the organ damage is already irreversibly severe, making specific treatments less efficacious. For this reason, in the last two decades, newborn screening has been implemented to allow early diagnosis and treatment. This became possible with the application of the standard enzymology fluorometric method to dried blood spots. Then, high-throughput multiplexable assays, such as digital microfluidics and tandem mass spectrometry, were developed. Recently DNA-based methods have been applied to newborn screening in some countries. Using these methods, several newborn screening pilot studies and programs have been implemented worldwide. However, several concerns persist, and newborn screening for Fabry disease is still not universally accepted. In particular, enzyme-based methods miss a relevant number of affected females. Moreover, ethical issues are due to the large number of infants with later onset forms or variants of uncertain significance. Long term follow-up of individuals detected by newborn screening will improve our knowledge about the natural history of the disease, the phenotype prediction and the patients' management, allowing a better evaluation of risks and benefits of the newborn screening for Fabry disease.

6.
J Clin Med ; 12(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36983365

ABSTRACT

Classic infantile Pompe disease is characterized by a severe phenotype with cardiomyopathy and hypotonia. Cardiomyopathy is generally hypertrophic and rapidly regresses after enzyme replacement therapy. In this report, for the first time, we describe a patient with infantile Pompe disease and hypertrophic cardiomyopathy that evolved into non-compaction myocardium after treatment. The male newborn had suffered since birth with hypertrophic cardiomyopathy and heart failure. He was treated with standard enzyme replacement therapy (ERT) (alglucosidase alfa) and several immunomodulation cycles due to the development of anti-ERT antibodies, without resolution of the hypertrophic cardiomyopathy. At the age of 2.5 years, he was treated with a new combination of ERT therapy (cipaglucosidase alfa) and a chaperone (miglustat) for compassionate use. After 1 year, the cardiac hypertrophy was resolved, but it evolved into non-compaction myocardium. Non-compaction cardiomyopathy is often considered to be a congenital, primitive cardiomyopathy, due to an arrest of compaction of the myocardium wall during the embryonal development. Several genetic causes have been identified. We first describe cardiac remodeling from hypertrophic cardiomyopathy to a non-compaction form in a patient with infantile Pompe disease treated with a new ERT. This has important implications both for the monitoring of Pompe disease patients and for the understanding of the pathophysiological basis of non-compaction myocardium.

7.
Orphanet J Rare Dis ; 17(1): 285, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854365

ABSTRACT

BACKGROUND: Glycogen storage disease (GSD) type 0, VI and IX are inborn errors of metabolism involving hepatic glycogen synthesis and degradation. We performed a characterization of a large Italian cohort of 30 patients with GSD type 0a, VI, IXa, IXb and IXc. A retrospective evaluation of genetical, auxological and endocrinological data, biochemical tests, and nutritional intakes was assessed. Eventual findings of overweight/obesity and insulin-resistance were correlated with diet composition. RESULTS: Six GSD-0a, 1 GSD-VI, and 23 GSD-IX patients were enrolled, with an age of presentation from 0 to 72 months (median 14 months). Diagnosis was made at a median age of 30 months, with a median diagnostic delay of 11 months and a median follow-up of 66 months. From first to last visit, patients gained a median height of 0.6 SDS (from - 1.1 to 2.1 SDS) and a median weight of 0.5 SDS (from - 2.5 to 3.3 SDS); mean and minimal glucose values significant improved (p < 0.05). With respect to dietary intakes, protein intake (g/kg) and protein intake (g/kg)/RDA ratio directly correlated with the glucose/insulin ratio (p < 0.05) and inversely correlated with HOMA-IR (Homeostasis model assessment of insulin resistance, p < 0.05), BMI SDS (p < 0.05) and %ibw (ideal body weight percentage, p < 0.01). CONCLUSION: A prompt establishment of specific nutritional therapy allowed to preserve growth, improve glycemic control and prevent liver complication, during childhood. Remarkably, the administration of a high protein diet appeared to have a protective effect against overweight/obesity and insulin-resistance.


Subject(s)
Glycogen Storage Disease , Insulins , Liver Diseases , Muscular Diseases , Child , Child, Preschool , Delayed Diagnosis , Glucose , Glycogen Storage Disease/complications , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Humans , Infant , Infant, Newborn , Liver Diseases/complications , Obesity , Overweight/complications , Retrospective Studies
8.
Front Genet ; 9: 625, 2018.
Article in English | MEDLINE | ID: mdl-30581454

ABSTRACT

Mitochondrial Fission Factor (MFF) is part of a protein complex that promotes mitochondria and peroxisome fission. Hitherto, only 5 patients have been reported harboring mutations in MFF, all of them with the clinical features of a very early onset Leigh-like encephalopathy. We report on an 11-year-old boy with epileptic encephalopathy. He presented with neurological regression, epileptic myoclonic seizures, severe intellectual disability, microcephaly, tetraparesis, optic atrophy, and ophthalmoplegia. Brain MRI pattern was compatible with Leigh syndrome. NGS-based analysis of a gene panel for mitochondrial disorders revealed a homozygous c.892C>T (p. Arg298*) in the MFF gene. Fluorescence staining detected abnormal morphology of mitochondria and peroxisomes in fibroblasts from the patient; a strong reduction in MFF protein levels and the presence of truncated forms were observed. No biochemical alterations denoting peroxisomal disorders were found. As reported in other disorders affecting the dynamics of intracellular organelles, our patient showed clinical features suggesting both mitochondrial and peroxisomal impairment. High levels of lactate in our case suggested an involvement of the energetic metabolism but without clear respiratory chain deficiency, while biomarkers of peroxisomal dysfunction were normal. We confirm that MFF mutations are associated with epileptic encephalopathy with Leigh-like MRI pattern.

SELECTION OF CITATIONS
SEARCH DETAIL
...