Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Cancers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760640

ABSTRACT

The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.

2.
Cell Rep ; 42(8): 112816, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37505981

ABSTRACT

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/metabolism , Gene Amplification , Neoplastic Stem Cells/metabolism , Carcinogenesis/pathology , Cell Line, Tumor
3.
Mol Oncol ; 17(7): 1280-1301, 2023 07.
Article in English | MEDLINE | ID: mdl-36862005

ABSTRACT

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation. Transcriptomic analyses and functional validation found that miRNA-483-3p directly targets NDRG1, known as a metastasis suppressor involved in EGFR family downregulation. Mechanistically, miRNA-483-3p overexpression induced the signaling pathway triggered by ERBB3, including AKT and GSK3ß, and led to the activation of transcription factors regulating epithelial-mesenchymal transition (EMT). Consistently, treatment with selective anti-ERBB3 antibodies counteracted the invasive growth of miRNA-483-3p-overexpressing m-colospheres. In human colorectal tumors, miRNA-483-3p expression inversely correlated with NDRG1 and directly correlated with EMT transcription factor expression and poor prognosis. These results unveil a previously unrecognized link between miRNA-483-3p, NDRG1, and ERBB3-AKT signaling that can directly support colorectal cancer invasion and is amenable to therapeutic targeting.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , Rectal Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Down-Regulation/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Colonic Neoplasms/genetics , Transcription Factors/metabolism , Rectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Neoplasm Invasiveness/genetics
4.
EMBO Mol Med ; 15(3): e16104, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36722641

ABSTRACT

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.


Subject(s)
Neoplasms, Unknown Primary , Neoplastic Stem Cells , Nerve Tissue Proteins , Animals , Humans , Mice , Axon Guidance , ErbB Receptors/genetics , Mutation , Neoplasm Recurrence, Local , Neoplasms, Unknown Primary/genetics , Nerve Tissue Proteins/genetics , Neoplastic Stem Cells/pathology
5.
Clin Cancer Res ; 29(7): 1252-1266, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36648487

ABSTRACT

PURPOSE: Current glioma diagnostic guidelines call for molecular profiling to stratify patients into prognostic and treatment subgroups. In case the tumor tissue is inaccessible, cerebrospinal fluid (CSF) has been proposed as a reliable tumor DNA source for liquid biopsy. We prospectively investigated the use of CSF for molecular characterization of newly diagnosed gliomas. EXPERIMENTAL DESIGN: We recruited two cohorts of newly diagnosed patients with glioma, one (n = 45) providing CSF collected in proximity of the tumor, the other (n = 39) CSF collected by lumbar puncture (LP). Both cohorts provided tumor tissues by surgery concomitant with CSF sampling. DNA samples retrieved from CSF and matched tumors were systematically characterized and compared by comprehensive (NGS, next-generation sequencing) or targeted (ddPCR, droplet digital PCR) methodologies. Conventional and molecular diagnosis outcomes were compared. RESULTS: We report that tumor DNA is abundant in CSF close to the tumor, but scanty and mostly below NGS sensitivity threshold in CSF from LP. Indeed, tumor DNA is mostly released by cells invading liquoral spaces, generating a gradient that attenuates by departing from the tumor. Nevertheless, in >60% of LP CSF samples, tumor DNA is sufficient to assess a selected panel of genetic alterations (IDH and TERT promoter mutations, EGFR amplification, CDKN2A/B deletion: ITEC protocol) and MGMT methylation that, combined with imaging, enable tissue-agnostic identification of main glioma molecular subtypes. CONCLUSIONS: This study shows potentialities and limitations of CSF liquid biopsy in achieving molecular characterization of gliomas at first clinical presentation and proposes a protocol to maximize diagnostic information retrievable from CSF DNA.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Mutation , Prognosis , Liquid Biopsy , DNA, Neoplasm , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Biomarkers, Tumor/genetics
6.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35636967

ABSTRACT

MET is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, MET becomes a "driver" for the onset and progression of cancer. The most frequent mutations in the MET gene affect the splicing sites of exon 14, leading to the deletion of the receptor's juxtamembrane domain (MET∆14). It is currently believed that, as in gene amplification, MET∆14 kinase is constitutively active. Our analysis of MET in carcinoma cell lines showed that MET∆14 strictly depends on HGF for kinase activation. Compared with wt MET, ∆14 is sensitive to lower HGF concentrations, with more sustained kinase response. Using three different models, we have demonstrated that MET∆14 activation leads to robust phosphorylation of AKT, leading to a distinctive transcriptomic signature. Functional studies revealed that ∆14 activation is predominantly responsible for enhanced protection from apoptosis and cellular migration. Thus, the unique HGF-dependent ∆14 oncogenic activity suggests consideration of HGF in the tumour microenvironment to select patients for clinical trials.


Subject(s)
Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-met , Humans , Ligands , Oncogenes , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism
8.
J Exp Clin Cancer Res ; 41(1): 112, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351166

ABSTRACT

BACKGROUND: The tyrosine kinase receptor encoded by the MET oncogene is a major player in cancer. When MET is responsible for the onset and progression of the transformed phenotype (MET-addicted cancers), an efficient block of its oncogenic activation results in potent tumor growth inhibition. METHODS: Here we describe a molecular engineered MET antibody (hOA-DN30) and validate its pharmacological activity in MET-addicted cancer models in vitro and in vivo. Pharmacokinetics and safety profile in non-human primates have also been assessed. RESULTS: hOA-DN30 efficiently impaired MET activation and the intracellular signalling cascade by dose and time dependent removal of the receptor from the cell surface (shedding). In vitro, the antibody suppressed cell growth by blocking cell proliferation and by concomitantly inducing cell death in multiple MET-addicted human tumor cell lines. In mice xenografts, hOA-DN30 induced an impressive reduction of tumor masses, with a wide therapeutic window. Moreover, the antibody showed high therapeutic efficacy against patient-derived xenografts generated from MET-addicted gastric tumors, leading to complete tumor regression and long-lasting effects after treatment discontinuation. Finally, hOA-DN30 showed a highly favorable pharmacokinetic profile and substantial tolerability in Cynomolgus monkeys. CONCLUSIONS: hOA-DN30 unique ability to simultaneously erase cell surface MET and release the 'decoy' receptor extracellular region results in a paramount MET blocking action. Its remarkable efficacy in a large number of pre-clinical models, as well as its pharmacological features and safety profile in non-human primates, strongly envisage a successful clinical application of this novel single-arm MET therapeutic antibody for the therapy of MET-addicted cancers.


Subject(s)
Proto-Oncogene Proteins c-met , Stomach Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction
9.
Cell Rep ; 36(4): 109455, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320350

ABSTRACT

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation. ERBB3 overexpression is driven by inheritable promoter methylation or post-transcriptional silencing of the oncosuppressor miR-205 and sustains the malignant phenotype. Overexpressed ERBB3 behaves as a specific signaling platform for fibroblast growth factor receptor (FGFR), driving PI3K/AKT/mTOR pathway hyperactivation, and overall metabolic upregulation. As a result, ERBB3 inhibition by specific antibodies is lethal for GBM stem-like cells and xenotransplants. These findings highlight a subset of patients eligible for ERBB3-targeted therapy.


Subject(s)
Glioblastoma/genetics , MicroRNAs/metabolism , Receptor, ErbB-3/metabolism , Antibodies/metabolism , Apoptosis , Cell Line, Tumor , Fibroblast Growth Factor 2 , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , MicroRNAs/genetics , Oligodendroglia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Spheroids, Cellular/pathology , TOR Serine-Threonine Kinases/metabolism
10.
Nat Commun ; 12(1): 2498, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941777

ABSTRACT

Cancers of unknown primary (CUPs), featuring metastatic dissemination in the absence of a primary tumor, are a biological enigma and a fatal disease. We propose that CUPs are a distinct, yet unrecognized, pathological entity originating from stem-like cells endowed with peculiar and shared properties. These cells can be isolated in vitro (agnospheres) and propagated in vivo by serial transplantation, displaying high tumorigenicity. After subcutaneous engraftment, agnospheres recapitulate the CUP phenotype, by spontaneously and quickly disseminating, and forming widespread established metastases. Regardless of different genetic backgrounds, agnospheres invariably display cell-autonomous proliferation and self-renewal, mostly relying on unrestrained activation of the MAP kinase/MYC axis, which confers sensitivity to MEK inhibitors in vitro and in vivo. Such sensitivity is associated with a transcriptomic signature predicting that more than 70% of CUP patients could be eligible to MEK inhibition. These data shed light on CUP biology and unveil an opportunity for therapeutic intervention.


Subject(s)
Carcinogenesis/pathology , Neoplasm Metastasis/pathology , Neoplasms, Unknown Primary/pathology , Neoplastic Stem Cells/pathology , Spheroids, Cellular/pathology , Animals , Carcinogenesis/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis/genetics , Neoplasm Transplantation , Neoplasms, Unknown Primary/genetics , Tumor Cells, Cultured
11.
Int J Mol Sci ; 22(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921709

ABSTRACT

BACKGROUND: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. METHODS: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. RESULTS: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. CONCLUSIONS: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.


Subject(s)
Deep Learning , Exons/genetics , Genetic Variation/genetics , Humans , Neural Networks, Computer
12.
J Exp Clin Cancer Res ; 40(1): 32, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446252

ABSTRACT

BACKGROUND: The receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (MET addiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (MET expedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition. METHODS: In this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by 'head-to-tail' or 'tail-to-head' fusion of a single chain Fab derived from the DN30 MET antibody with a recombinant 'ad-hoc' engineered MET extracellular domain (decoyMET), encompassing the HGF binding site but lacking the DN30 epitope. RESULTS: The hybrid molecules correctly bind MET and HGF, inhibit HGF-induced MET downstream signaling, and quench HGF-driven biological responses, such as growth, motility and invasion, in cancer cells of different origin. Two metastatic models were generated in mice knocked-in by the human HGF gene: (i) orthotopic transplantation of pancreatic cancer cells; (ii) subcutaneous injection of primary cells derived from a cancer of unknown primary. Treatment with hybrid molecules strongly affects time of onset, number, and size of metastatic lesions. CONCLUSION: These results provide a strategy to treat metastatic dissemination driven by the HGF/MET axis.


Subject(s)
Immunoconjugates/pharmacology , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , A549 Cells , Animals , Binding Sites, Antibody , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Hepatocyte Growth Factor/antagonists & inhibitors , Hepatocyte Growth Factor/immunology , Humans , Immunoconjugates/immunology , Immunoglobulin Fab Fragments/immunology , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasms/immunology , Proto-Oncogene Proteins c-met/immunology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Xenograft Model Antitumor Assays
13.
EMBO Mol Med ; 12(7): e11756, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32511869

ABSTRACT

Cancer of unknown primary (CUP) is an obscure disease characterized by multiple metastases in the absence of a primary tumor. No consensus has been reached whether CUPs are simply generated from cancers that cannot be detected or whether they are the manifestation of a still unknown nosological entity. Here, we report the complete expression and genetic analysis of multiple synchronous metastases harvested at warm autopsy of a patient with CUP. The expression profiles were remarkably similar and astonishingly singular. The whole exome analysis yielded a high number of mutations present in all metastases (fully shared), additional mutations (partially shared) accumulated one after another in a series, and few private mutations were unique to each metastasis. Surprisingly, the phylogenetic trajectory linking CUP metastases was atypical, depicting a common "stream", sprouting a series of linear "brooks", at variance from the extensive branched evolution observed in metastases from most cancers of known origin. The distinctive genetic and evolutionary features depicted suggest that CUP is a novel nosological entity.


Subject(s)
Mutation , Neoplasms, Unknown Primary/classification , Neoplasms, Unknown Primary/genetics , DNA Mutational Analysis , Evolution, Molecular , Exome/genetics , Humans , Male , Middle Aged , Neoplasms, Unknown Primary/pathology , Exome Sequencing
15.
Br J Cancer ; 120(5): 527-536, 2019 03.
Article in English | MEDLINE | ID: mdl-30723303

ABSTRACT

BACKGROUND: Interferon-induced expression of programmed cell death ligands (PD-L1/PD-L2) may sustain tumour immune-evasion. Patients featuring MET amplification, a genetic lesion driving transformation, may benefit from anti-MET treatment. We explored if MET-targeted therapy interferes with Interferon-γ modulation of PD-L1/PD-L2 in MET-amplified tumours. METHODS: PD-L1/PD-L2 expression and signalling pathways downstream of MET or Interferon-γ were analysed in MET-amplified tumour cell lines and in patient-derived tumour organoids, in basal condition, upon Interferon-γ stimulation, and after anti-MET therapy. RESULTS: PD-L1 and PD-L2 were upregulated in MET-amplified tumour cells upon Interferon-γ treatment. This induction was impaired by JNJ-605, a selective inhibitor of MET kinase activity, and MvDN30, an antibody inducing MET proteolytic cleavage. We found that activation of JAKs/ STAT1, signal transducers downstream of the Interferon-γ receptor, was neutralised by MET inhibitors. Moreover, JAK2 and MET associated in the same signalling complex depending on MET phosphorylation. Results were confirmed in MET-amplified organoids derived from human colorectal tumours, where JNJ-605 treatment revoked Interferon-γ induced PD-L1 expression. CONCLUSIONS: These data show that in MET-amplified cancers, treatment with MET inhibitors counteracts the induction of PD-1 ligands by Interferon-γ. Thus, therapeutic use of anti-MET drugs may provide additional clinical benefit over and above the intended inhibition of the target oncogene.


Subject(s)
B7-H1 Antigen/drug effects , Interferon-gamma/pharmacology , Neoplasms/genetics , Programmed Cell Death 1 Ligand 2 Protein/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Tumor Escape/drug effects , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Janus Kinases/drug effects , Janus Kinases/metabolism , Liver Neoplasms/secondary , Molecular Targeted Therapy , Neoplasms/metabolism , Organoids , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Proto-Oncogene Proteins c-met/genetics , Receptors, Interferon , STAT1 Transcription Factor/drug effects , STAT1 Transcription Factor/metabolism , Signal Transduction , Tumor Escape/genetics , Interferon gamma Receptor
16.
Int J Mol Sci ; 19(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544501

ABSTRACT

The 'onco-receptor' MET (Hepatocyte Growth Factor Receptor) is involved in the activation of the invasive growth program that is essential during embryonic development and critical for wound healing and organ regeneration during adult life. When aberrantly activated, MET and its stroma-secreted ligand HGF (Hepatocyte Growth Factor) concur to tumor onset, progression, and metastasis in solid tumors, thus representing a relevant target for cancer precision medicine. In the vast majority of tumors, wild-type MET behaves as a 'stress-response' gene, and relies on ligand stimulation to sustain cancer cell 'scattering', invasion, and protection form apoptosis. Moreover, the MET/HGF axis is involved in the crosstalk between cancer cells and the surrounding microenvironment. Pancreatic cancer (namely, pancreatic ductal adenocarcinoma, PDAC) is an aggressive malignancy characterized by an abundant stromal compartment that is associated with early metastases and resistance to conventional and targeted therapies. Here, we discuss the role of the MET/HGF axis in tumor progression and dissemination considering as a model pancreatic cancer, and provide a proof of concept for the application of dual MET/HGF inhibition as an adjuvant therapy in pancreatic cancer patients.


Subject(s)
Hepatocyte Growth Factor/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-met/metabolism , Animals , Hepatocyte Growth Factor/genetics , Humans , Neoplasm Metastasis , Proto-Oncogene Proteins c-met/genetics
17.
Proc Natl Acad Sci U S A ; 115(40): 10058-10063, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224486

ABSTRACT

Cancer clonal evolution is based on accrual of driving genetic alterations that are expected to cooperate and progressively increase malignancy. Little is known on whether any genetic alteration can hinder the oncogenic function of a coexisting alteration, so that therapeutic targeting of the one can, paradoxically, revive the function of the other. We report the case of a driver oncogene (MET) that is not only bypassed, but also disabled by the mutation of a downstream transducer (BRAF), and reignited by inhibition of the latter. In a metastasis originated from a cancer of unknown primary (CUP), the MET oncogene was amplified eightfold, but unexpectedly, the kinase was dephosphorylated and inactive. As result, specific drugs targeting MET (JNJ-38877605) failed to inhibit growth of xenografts derived from the patient. In addition to MET amplification, the patient harbored, as sole proliferative driver, a mutation hyperactivating BRAF (G469A). Surprisingly, specific blockade of the BRAF pathway was equally ineffective, and it was accompanied by rephosphorylation of the amplified MET oncoprotein and by revived addiction to MET. Mechanistically, MET inactivation in the context of the BRAF-activating mutation is driven through a negative feedback loop involving inactivation of PP2A phosphatase, which in turn leads to phosphorylation on MET inhibitory Ser985. Disruption of this feedback loop allows PP2A reactivation, removing the inhibitory phosphorylation from Ser985 and thereby unleashing MET kinase activity. Evidence is provided for a mechanism of therapeutic resistance to single-oncoprotein targeting, based on reactivation of a genetic alteration functionally dormant in targeted cancer cells.


Subject(s)
Mutation, Missense , Neoplasms/drug therapy , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins c-met , Pyrazoles/pharmacology , Pyridazines/pharmacology , A549 Cells , Amino Acid Substitution , Animals , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Xenograft Model Antitumor Assays
18.
Int J Cancer ; 143(11): 2838-2848, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30144023

ABSTRACT

Demethylation of the long interspersed nuclear element (LINE-1; L1) antisense promoter can result in transcription of neighboring sequences as for the L1-MET transcript produced by the L1 placed in the second intron of MET. To define the role of L1-MET, we investigated the sequence and the transcription of L1-MET in vitro models and heterogeneous breast cancers, previously reported to show other L1-derived transcripts. L1-MET expressing cell lines were initially identified in silico and investigated for L1-MET promoter methylation, cDNA sequence and cell fraction mRNA. The transcriptional level of L1-MET and MET were then evaluated in breast specimens, including 9 cancer cell lines, 41 carcinomas of different subtypes, and 11 normal tissues. In addition to a L1-MET transcript ending at MET exon 21, six novel L1-MET splice variants were identified. Normal breast tissues were negative for the L1-MET expression, whereas the triple-negative breast cancer (TNBC) and the high-grade carcinomas were enriched with the L1-MET mRNA (p = 0.005 and p = 0.018, respectively). In cancer cells and tissues the L1-MET expression was associated with its promoter hypomethylation (ρ = -0.8 and -0.9, respectively). No correlation was found between L1-MET and MET mRNA although L1-MET expressing tumors with higher L1-MET/MET ratio were negative for the MET protein expression (p = 0.006). Besides providing the first identification and detailed description of L1-MET in breast cancer, we clearly demonstrate that higher levels of this transcript specifically recognize a subset of more aggressive carcinomas, mainly TNBC. We suggest the possible evaluation of L1-MET in the challenging diagnosis of early TNBCs.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Long Interspersed Nucleotide Elements/genetics , Proto-Oncogene Proteins c-met/genetics , Triple Negative Breast Neoplasms/genetics , A549 Cells , Breast/metabolism , Cell Line, Tumor , DNA Methylation/genetics , Female , HCT116 Cells , Humans , Promoter Regions, Genetic/genetics , RNA Splicing/genetics , RNA, Messenger/genetics
19.
Nat Rev Cancer ; 18(6): 341-358, 2018 06.
Article in English | MEDLINE | ID: mdl-29674709

ABSTRACT

The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.


Subject(s)
Clonal Evolution/genetics , Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-met/genetics , Cell Survival/genetics , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Oncogene Addiction/genetics , Oncogenes , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Stromal Cells/metabolism
20.
Int J Cancer ; 143(7): 1774-1785, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29693242

ABSTRACT

MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMETK842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMETK842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience."


Subject(s)
Antibodies, Monoclonal/pharmacology , Colonic Neoplasms/drug therapy , Glioblastoma/drug therapy , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Ligands , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins c-met/immunology , Proto-Oncogene Proteins c-met/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...