Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(3): e2307747, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990971

ABSTRACT

Current treatments for modulating the glial-mediated inflammatory response after spinal cord injury (SCI) have limited ability to improve recovery. This is quite likely due to the lack of a selective therapeutic approach acting on microgliosis and astrocytosis, the glia components most involved after trauma, while maximizing efficacy and minimizing side effects. A new nanogel that can selectively release active compounds in microglial cells and astrocytes is developed and characterized. The degree of selectivity and subcellular distribution of the nanogel is evaluated by applying an innovative super-resolution microscopy technique, expansion microscopy. Two different administration schemes are then tested in a SCI mouse model: in an early phase, the nanogel loaded with Rolipram, an anti-inflammatory drug, achieves significant improvement in the animal's motor performance due to the increased recruitment of microglia and macrophages that are able to localize the lesion. Treatment in the late phase, however, gives opposite results, with worse motor recovery because of the widespread degeneration. These findings demonstrate that the nanovector can be selective and functional in the treatment of the glial component in different phases of SCI. They also open a new therapeutic scenario for tackling glia-mediated inflammation after neurodegenerative events in the central nervous system.


Subject(s)
Polyethylene Glycols , Polyethyleneimine , Spinal Cord Injuries , Mice , Animals , Nanogels/therapeutic use , Spinal Cord Injuries/pathology , Neuroglia/pathology , Microglia
2.
Nutrients ; 15(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36904283

ABSTRACT

As lactoferrin is a nutritional supplement with proven antiviral and immunomodulatory abilities, it may be used to improve the clinical course of COVID-19. The clinical efficacy and safety of bovine lactoferrin were evaluated in the LAC randomized double-blind placebo-controlled trial. A total of 218 hospitalized adult patients with moderate-to-severe COVID-19 were randomized to receive 800 mg/die oral bovine lactoferrin (n = 113) or placebo (n = 105), both given in combination with standard COVID-19 therapy. No differences in lactoferrin vs. placebo were observed in the primary outcomes: the proportion of death or intensive care unit admission (risk ratio of 1.06 (95% CI 0.63-1.79)) or proportion of discharge or National Early Warning Score 2 (NEWS2) ≤ 2 within 14 days from enrollment (RR of 0.85 (95% CI 0.70-1.04)). Lactoferrin showed an excellent safety and tolerability profile. Even though bovine lactoferrin is safe and tolerable, our results do not support its use in hospitalized patients with moderate-to-severe COVID-19.


Subject(s)
COVID-19 , Adult , Humans , Lactoferrin , Double-Blind Method , Antiviral Agents/therapeutic use , Treatment Outcome
3.
J Cereb Blood Flow Metab ; 43(5): 680-693, 2023 05.
Article in English | MEDLINE | ID: mdl-36655331

ABSTRACT

Brain ischemia is a common acute injury resulting from impaired blood flow to the brain. Translation of effective drug candidates from experimental models to patients has systematically failed. The use of human induced pluripotent stem cells (iPSC) offers new opportunities to gain translational insights into diseases including brain ischemia. We used a human 3D self-assembling iPSC-derived model (human cortical organoids, hCO) to characterize the effects of ischemia caused by oxygen-glucose deprivation (OGD). hCO exposed to 2 h or 8 h of OGD had neuronal death and impaired neuronal network complexity, measured in whole-mounting microtubule-associated protein 2 (MAP-2) immunostaining. Neuronal vulnerability was reflected by a reduction in MAP-2 mRNA levels, and increased release of neurofilament light chain (NfL) in culture media, proportional to OGD severity. Glial fibrillary acidic protein (GFAP) gene or protein levels did not change in hCO, but their release in medium increased after prolonged OGD. In conclusion, this human 3D iPSC-based in vitro model of brain ischemic injury is characterized by marked neuronal injury reflected by the release of the translational biomarker NfL which is relevant for testing neuroprotective strategies.


Subject(s)
Brain Ischemia , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Brain Ischemia/metabolism , Oxygen/metabolism , Cell Death , Glucose/pharmacology , Organoids/metabolism , Cells, Cultured
4.
Toxicology ; 462: 152935, 2021 10.
Article in English | MEDLINE | ID: mdl-34509577

ABSTRACT

Imidacloprid is an insecticide belonging to neonicotinoids, a class of agonists of the nicotinic acetylcholine receptors that shows higher affinities in insects compared to mammals. However, recent evidence show that neonicotinoids can bind to the mammalian receptors, leading to detrimental responses in cultured neurons. We developed an analytical strategy which uses mass spectrometry with multiple reaction monitoring (targeted approach) and high-resolution acquisitions (untargeted approach), which were applied to quantify imidacloprid and to identify its metabolites in biological tissues after oral treatments of mice. Mouse dams were treated with doses from 0.118 mg/kg bw day up to 41 mg/kg day between gestational days 6-9. Results showed quantifiable levels of imidacloprid in plasma (from 30.48 to 5705 ng/mL) and brain (from 20.48 to 5852 ng/g) of treated mice, proving the passage through the mammalian blood-brain barrier with a high correspondence between doses and measured concentrations. Untargeted analyses allowed the identification of eight metabolites including imidacloprid-olefin, hydroxy-imidacloprid dihydroxy-imidacloprid, imidacloprid-nitrosimine, desnitro-imidacloprid, 6-chloronicotinic acid, 5-(methylsulfanyl)pyridine-2-carboxylic acid and N-imidazolidin-2-ylidenenitramide in plasma and brain. Moreover, analysis of embryonic tissues after oral treatment of mouse dams showed detectable levels of imidacloprid (816.6 ng/g after a dose of 4.1 mg/Kg bw day and 5646 ng/g after a dose of 41 mg/Kg bw day) and its metabolites, proving the permeability of the placenta barrier. Although many studies have been reported on the neurotoxicity of neonicotinoids, our study paves the way for a risk assessment in neurodevelopmental toxicity, demostrating the capability of imidacloprid and its metabolites to pass the biological barriers.


Subject(s)
Insecticides/pharmacokinetics , Mass Spectrometry/methods , Neonicotinoids/pharmacokinetics , Nitro Compounds/pharmacokinetics , Administration, Oral , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dose-Response Relationship, Drug , Female , Fetus/metabolism , Insecticides/analysis , Male , Mice , Neonicotinoids/administration & dosage , Neonicotinoids/analysis , Nitro Compounds/administration & dosage , Nitro Compounds/analysis , Placenta/metabolism , Pregnancy , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...