Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(2): 432-440, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425897

ABSTRACT

Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.

2.
Commun Biol ; 5(1): 1202, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352173

ABSTRACT

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Subject(s)
Amyloid , Prions , Amyloid/chemistry , Magnetic Resonance Spectroscopy/methods , Amyloidogenic Proteins , Magnetic Resonance Imaging
3.
Chem Sci ; 13(33): 9507-9514, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091907

ABSTRACT

The isobutyl side chain is a highly prevalent hydrophobic group in drugs, and it notably constitutes the side chain of leucine. Its replacement by a hexafluorinated version containing two CF3 groups may endow the target compound with new and advantageous properties, yet this modification remains overlooked due to the absence of a general and practical synthetic methodology. Herein, we report the first general method to introduce the hexafluoroisobutyl group into ketoesters, malonates, 1,3-diketones, Schiff base esters and malononitrile. We demonstrated that the reaction occurs through an elimination/allylic shift/hydrofluorination cascade process which efficiently overcomes the usual fluoride ß-elimination observed with α-CF3-vinyl groups. We showed that with alkali metal bases, a pentafluorinated alkene is obtained predominantly, whereas the use of tetrabutylammonium fluoride (TBAF) allows hydrofluorination to occur. This tandem process represents a conceptually new pathway to synthesize bis-trifluoromethylated compounds. This methodology was applied to the multigram-scale synthesis of enantiopure (S)-5,5,5,5',5',5'-hexafluoroleucine.

4.
J Med Chem ; 64(23): 17063-17078, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34806883

ABSTRACT

The bacterial DNA sliding clamp (SC), or replication processivity factor, is a promising target for the development of novel antibiotics. We report a structure-activity relationship study of a new series of peptides interacting within the Escherichia coli SC (EcSC) binding pocket. Various modifications were explored including N-alkylation of the peptide bonds, extension of the N-terminal moiety, and introduction of hydrophobic and constrained residues at the C-terminus. In each category, single modifications were identified that increased affinity to EcSC. A combination of such modifications yielded in several cases to a substantially increased affinity compared to the parent peptides with Kd in the range of 30-80 nM. X-ray structure analysis of 11 peptide/EcSC co-crystals revealed new interactions at the peptide-protein interface (i.e., stacking interactions, hydrogen bonds, and hydrophobic contacts) that can account for the improved binding. Several compounds among the best binders were also found to be more effective in inhibiting SC-dependent DNA synthesis.


Subject(s)
Escherichia coli/chemistry , Peptides/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Protein Conformation , Structure-Activity Relationship , Thermodynamics
6.
RSC Chem Biol ; 1(3): 137-147, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-34458754

ABSTRACT

The bacterial processivity factor, or sliding clamp (SC), is a target of choice for new antibacterial drugs development. We have previously developed peptides that target Escherichia coli SC and block its interaction with DNA polymerases in vitro. Here, one such SC binding peptide was fused to a Proline-rich AntiMicrobial Peptide (PrAMP) to allow its internalization into E. coli cells. Co-immunoprecipitation assays with a N-terminally modified bifunctional peptide that still enters the bacteria but fails to interact with the bacterial ribosome, the major target of PrAMPs, demonstrate that it actually interacts with the bacterial SC. Moreover, when compared to SC non-binding controls, this peptide induces a ten-fold higher antibacterial activity against E. coli, showing that the observed antimicrobial activity is linked to SC binding. Finally, an unmodified bifunctional compound significantly increases the survival of Drosophila melanogaster flies challenged by an E. coli infection. Our study demonstrates the potential of PrAMPs to transport antibiotics into the bacterial cytoplasm and validates the development of drugs targeting the bacterial processivity factor of Gram-negative bacteria as a promising new class of antibiotics.

7.
RSC Adv ; 9(69): 40263-40267, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-35542663

ABSTRACT

Determination of glycosidase hydrolysis kinetics for a monovalent sugar substrate is relatively straightforward and classically achieved by monitoring the fluorescence signal released from the sugar-conjugated probe after enzymatic hydrolysis. Naturally occuring sugar epitopes are, however, often clustered on biopolymers or at biological surfaces, and previous reports have shown that glycosidase hydrolytic rates can differ greatly with multivalent presentation of the sugar epitopes. New probes are needed to make it easier to interpret the importance of substrate clustering towards a specific enzyme activity. In this work, we developed multivalent glucuronide substrates attached to fluorescent amino-coumarines through self-immolative linkers to enable real time-monitoring of the hydrolysing activity of E.coli ß-glucuronidases (GUS) towards clustered substrates. GUS are exoglycosidases of considerable therapeutic interest cleaving ß-d-glucuronides and are found in the lysosomes, in the tumoral microenvironment, and are expressed by gut microbiota. GUS showed a much lower catalytic efficiency in hydrolysing clustered glucuronides due to a significantly lower enzymatic velocity and affinity for the substrates. GUS was 52-fold less efficient in hydrolysing GlcA substrates presented on an octameric silsequioxane (COSS) compared with a monovalent GlcA of similar chemical structure. Thus, kinetic and thermodynamic data of GUS hydrolysis towards multivalent glucuronides were easily obtained with these new types of enzymatically-triggered probes. More generally, adapting the substrate nature and valency of these new probes, should improve understanding of the impact of multivalency for a specific enzyme.

8.
Eur J Med Chem ; 158: 1-6, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30199702

ABSTRACT

We report on the synthesis and in vitro biological evaluations of a nanomolar protein kinase inhibitor (PKI) and its ß-glucuronidase-responsive albumin-binding prodrug. The highly potent PKI is 400-3400 times more cytotoxic than the well-known PKI Roscovitine. The prodrug is able to bind covalently to human serum albumin through Michael addition and release the cytotoxic PKI in the presence of ß-glucuronidase, an enzyme over-expressed in the microenvironment of solid tumours.


Subject(s)
Antineoplastic Agents/pharmacology , Glucuronidase/metabolism , Prodrugs/pharmacology , Protein Kinase Inhibitors/pharmacology , Serum Albumin, Human/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism
9.
Org Biomol Chem ; 15(20): 4399-4416, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28485455

ABSTRACT

Polycyclization reactions are among the most efficient synthetic tools for the synthesis of complex, polycyclic molecules in a single operation from simple starting materials. We report in this manuscript a full account on the discovery and development of a novel cationic polycyclization from readily available ynamides. Simple activation of these building blocks under acidic conditions enables the generation of highly reactive activated keteniminium ions, which triggers an unprecedented cationic polycyclization yielding highly substituted polycyclic nitrogen heterocycles possessing up to seven fused cycles and three contiguous stereocenters.

10.
Chemphyschem ; 18(6): 683-691, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28097770

ABSTRACT

Metal triflates, often called Lewis superacids, are potent catalysts for organic synthesis. However, the reactivity of a given Lewis superacid toward a given base is difficult to anticipate. A systematic screening of catalysts is often necessary when developing synthetic methodologies. Presented herein is the development of quantitative reactivity and bond strength scales by using mass spectrometry (MS). By applying a collision-induced dissociation (CID) technique to the adducts formed between Lewis superacids Al(OTf)3 or In(OTf)3 with a series of amides bases, including monodentate and bidentate ligands, different dissociation pathways were observed. Quantitative relative energy scales were established by performing energy-resolved mass spectrometry (ERMS) analysis on the adducts. ERMS of the adducts affords a bond strength scale when the fragmentation leads to the loss of a ligand, and reactivity scales when the dissociation leads to the C-F bond activation of one triflate anion or the deprotonation of the ligand. Al(OTf)3 was found to bind stronger to amides than In(OTf)3 and to provide the most reactive adducts.

11.
Chemistry ; 23(12): 2811-2819, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-27906491

ABSTRACT

Rational modulations of molecular interactions are of significant importance in compound properties optimization. We have previously shown that fluorination of conformationally rigid cyclohexanols leads to attenuation of their hydrogen-bond (H-bond) donating capacity (designated by pKAHY ) when OH⋅⋅⋅F intramolecular hydrogen-bond (IMHB) interactions occur, as opposed to an increase in pKAHY due to the fluorine electronegativity. This work has now been extended to a wider range of aliphatic ß-fluorohydrins with increasing degrees of conformational flexibility. We show that the observed differences in pKAHY between closely related diastereomers can be fully rationalized by subtle variations in populations of conformers able to engage in OH⋅⋅⋅F IMHB, as well as by the strength of these IMHBs. We also show that the Kenny theoretical Vα (r) descriptor of H-bond acidity accurately reflects the observed variations and a calibration equation extended to fluorohydrins is proposed. This work clearly underlines the importance of the weak OH⋅⋅⋅F IMHB in the modulation of alcohol H-bond donating capacity.

12.
Chemphyschem ; 17(17): 2702-9, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27237621

ABSTRACT

The conformational preferences of o-cresols driven by fluorination were thoroughly investigated from a theoretical point of view with quantum-chemical methods, and the results were compared to those recently reported for benzyl alcohols. The key conformers of both families exhibit a six-membered intramolecular hydrogen-bond (IMHB) interaction. A significant enhancement in the strength of the IMHB is observed in α-fluoro-o-cresols, owing to a simultaneous increase in the hydrogen bond (HB) basicity of the aliphatic fluorine and the HB acidity of the aromatic hydroxyl relative to that observed for o-fluorobenzyl alcohols, which are characterized by aromatic fluorine atoms and aliphatic hydroxyl groups. In the cases of the di- and trifluorinated derivatives, the occurrence of a three-centered HB is emphasized, and its features are discussed. The impact of these structural predilections on the HB properties of o-cresol was characterized from the estimation of the HB acidity parameter, pKAHY , weighted according to their conformational populations. We found that α-fluorination led to a decrease in the HB acidity of the hydroxyl group (in contrast with the o-fluorination of benzyl alcohols), whereas α,α-difluorination resulted in no significant variation in pKAHY . Finally, an increase in the HB acidity was predicted upon methyl perfluorination, which was confirmed experimentally. Theoretical descriptors based on atoms in molecules, noncovalent interactions, and natural bond orbital analyses allowed rationalization of the predicted trends and revealed a relationship with the strength of the established OH⋅⋅⋅F IMHB.

13.
Angew Chem Int Ed Engl ; 55(2): 674-8, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26592706

ABSTRACT

Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non-UV-active compounds. A new variation of the shake-flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported.

14.
Chemistry ; 21(49): 17808-16, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26494542

ABSTRACT

Fluorination is commonly exercised in compound property optimization. However, the influence of fluorination on hydrogen-bond (HB) properties of adjacent functional groups, as well as the HB-accepting capacity of fluorine itself, is still not completely understood. Although the formation of OH⋅⋅⋅F intramolecular HBs (IMHBs) has been established for conformationally restricted fluorohydrins, such interaction in flexible compounds remained questionable. Herein is demonstrated for the first time-and in contrast to earlier reports-the occurrence of OH⋅⋅⋅F IMHBs in acyclic saturated γ-fluorohydrins, even for the parent 3-fluoropropan-1-ol. The relative stereochemistry is shown to have a crucial influence on the corresponding (h1) JOH⋅⋅⋅F values, as illustrated by syn- and anti-4-fluoropentan-2-ol (6.6 and 1.9 Hz). The magnitude of OH⋅⋅⋅F IMHBs and their strong dependence on the overall molecular conformational profile, fluorination motif, and alkyl substitution level, is rationalized by quantum chemical calculations. For a given alkyl chain, the "rule of shielding" applies to OH⋅⋅⋅F IMHB energies. Surprisingly, the predicted OH⋅⋅⋅F IMHB energies are only moderately weaker than these of the corresponding OH⋅⋅⋅OMe. These results provide new insights of the impact of fluorination of aliphatic alcohols, with attractive perspectives for rational drug design.

15.
Chemistry ; 21(32): 11462-74, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26130594

ABSTRACT

The effect of fluorination on the conformational and hydrogen-bond (HB)-donating properties of a series of benzyl alcohols has been investigated experimentally by IR spectroscopy and theoretically with quantum chemical methods (ab initio (MP2) and DFT (MPWB1K)). It was found that o-fluorination generally resulted in an increase in the HB acidity of the hydroxyl group, whereas a decrease was observed upon o,o'-difluorination. Computational analysis showed that the conformational landscapes of the title compounds are strongly influenced by the presence of o-fluorine atoms. Intramolecular interaction descriptors based on AIM, NCI and NBO analyses reveal that, in addition to an intramolecular OH⋅⋅⋅F interaction, secondary CH⋅⋅⋅F and/or CH⋅⋅⋅O interactions also occur, contributing to the stabilisation of the various conformations, and influencing the overall HB properties of the alcohol group. The benzyl alcohol HB-donating capacity trends are properly described by an electrostatic potential based descriptor calculated at the MPWB1K/6-31+G(d,p) level of theory, provided solvation effects are taken into account for these flexible HB donors.

16.
J Org Chem ; 80(7): 3397-410, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25569215

ABSTRACT

(E)- and (Z)-α-fluoroenamides could be easily prepared with high levels of chemo- and regioselectivities by hydrofluorination of readily available ynamides with HF/pyridine. The scope and limitations of this new process for the hydrofluorination of ynamides, as well as the stability of the resulting α-fluoroenamides, have been extensively studied. Theoretical calculations at the MP2 and B3LYP levels of theory showed that the resulting fluoroenamides exhibit geometrical and electronic properties that partially mirror those of ureas, therefore demonstrating that the hydrofluorination of ynamides provides a general, straightforward, and user-friendly approach to bioisosteres of ureas, potent building blocks for biological studies and medicinal chemistry.


Subject(s)
Pyridines/chemistry , Urea/chemistry , Catalysis , Esters , Halogenation , Molecular Structure , Quantum Theory , Stereoisomerism
17.
J Am Chem Soc ; 136(36): 12528-31, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-24931745

ABSTRACT

A novel and efficient keteniminium-initiated cationic polycyclization is reported. This reaction, which only requires triflic acid or bistriflimide as promoters, affords a straightforward entry to polycyclic nitrogen heterocycles possessing up to three contiguous stereocenters and seven fused cycles. These complex, polycyclic molecules can be obtained in a single operation from readily available ynamides which were shown to be remarkable building blocks for multiple, consecutive cationic transformations.

18.
J Org Chem ; 78(9): 4463-72, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23611174

ABSTRACT

The selective synthesis of tetrahydroquinolines and fluorinated arylamines was performed in superacid HF/SbF5 through a superelectrophilic ammonium-carbenium activation process. This anti-Markovnikov oriented reaction was applied to the straightforward synthesis of highly valued (fluorinated) nitrogen-containing heterocyclic compounds.


Subject(s)
Antimony/chemistry , Drug Design , Fluorides/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Hydrofluoric Acid/chemistry , Polycyclic Compounds/chemical synthesis , Quinolines/chemical synthesis , Cyclization , Hydrocarbons, Fluorinated/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Polycyclic Compounds/chemistry , Quinolines/chemistry
19.
Bioorg Med Chem ; 21(6): 1555-63, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-22705188

ABSTRACT

A series of new, halogen containing N-substituted 4-aminobenzenesulfonamides were synthesized by using superacid HF/SbF5 chemistry and investigated as inhibitors of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, that is, the cytosolic hCA I and II and, the tumor-associated transmembrane isoforms hCA IX and XII. Despite the substitution of the sulfonamide function, the presence of fluorine atom(s) in ß position of the sulfonamide function strongly favors hCA inhibition. A similar effect of the ß-fluorinated alkyl substitution on the amino function has been also observed. Among the tested compounds, several chlorinated derivatives have been identified as selective nanomolar, tumor-associated isoforms inhibitors. These non-primary sulfonamides probably bind in the coumarin-binding site, at the entrance of the cavity, and not to the metal ion as the primary sulfonamide inhibitors.


Subject(s)
Antigens, Neoplasm/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrases/chemistry , Fluorine/chemistry , Sulfonamides/chemistry , Antigens, Neoplasm/metabolism , Binding Sites , Carbonic Anhydrase I/chemistry , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrases/metabolism , Catalytic Domain , Humans , Molecular Docking Simulation , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
20.
Chem Commun (Camb) ; 48(47): 5877-9, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22569949

ABSTRACT

Anti-Markovnikov additions to non-conjugated unsaturated amines in superacid are reported. In situ NMR studies, DFT calculations and labelled substrates reactions support the involvement of new ammonium-carbenium superelectrophiles in this original process.

SELECTION OF CITATIONS
SEARCH DETAIL
...