Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792228

ABSTRACT

Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.


Subject(s)
Alendronate , Bone and Bones , Cholecalciferol , Micelles , Nanostructures , Cholecalciferol/chemistry , Nanostructures/chemistry , Bone and Bones/drug effects , Bone and Bones/metabolism , Alendronate/chemistry , Polyethylene Glycols/chemistry , Humans , Drug Delivery Systems , Luminescence , Nanoparticles/chemistry , Drug Carriers/chemistry , Quantum Dots/chemistry
2.
ChemSusChem ; : e202400661, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787340

ABSTRACT

Carbon dioxide capture and utilization is a strategic technology for moving away from fossil-C. The conversion of CO2 into fuels demands energy and hydrogen that cannot be sourced from fossil-C. Co-processing of CO2 and water under solar irradiation will have a key role in the long-term for carbon-recycling and energy products production. This article discusses the synthesis, characterization and application of the two-phase composite photocatalyst, In2O3@g-C3N4, formed by thermal condensation of melamine in the presence of indium(III)nitrate. The composite exhibits a n,n-heterojunction between two n-type semiconductors, g-C3N4 and In2O3, leading to a more efficient charge separation. The composite has a flat band potential enabling it to effectively catalyze the reduction of CO2 in the gas phase to produce CO, CH4 and CH3OH. While the composite's overall photocatalytic efficiency is comparable to that of neat g-C3N4, its ability to promote multielectron-transfer and Proton Coupled to Electron Transfer (PCET) suggests that there is a potential for further optimization of its properties. The use of labelled 13CO2 has allowed us to clearly exclude that the reduced species are derived from the photocatalyst decomposition or the degradation of contaminants.

3.
Antioxidants (Basel) ; 13(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38539868

ABSTRACT

Different types of milk are used in the production of milk kefir, but little information is available on the release of potentially antioxidant exopolysaccharides (EPS). The aim of this study was to investigate whether the microbial dynamics and EPS release are dependent on the milk substrate. In our study, the inoculated microbial consortium was driven differently by each type of milk (cow, ewe, and goat). This was evident in the sugar consumption, organic acid production, free amino release, and EPS production. The amount and the composition of the secreted EPS varied depending on the milk type, with implications for the structure and functional properties of the EPS. The low EPS yield in ewe's milk was associated with a higher lactic acid production and thus with the use of carbon sources oriented towards energy production. Depending on the milk used as substrate, the EPS showed different monosaccharide and FT-IR profiles, microstructures, and surface morphologies. These differences affected the antiradical properties and reducing power of the EPS. In particular, EPS extracted from cow's milk had a higher antioxidant activity than other milk types, and the antioxidant activity was concentration dependent.

4.
ACS Appl Mater Interfaces ; 15(28): 33322-33334, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37417887

ABSTRACT

Inflammasome activation plays a crucial role in the progression to more severe stages of non-alcoholic fatty liver disease (NAFLD), representing a promising therapeutic target. MCC950 is a small molecule acting as a potent and specific inhibitor of the canonical and non-canonical activation of the NLRP3 inflammasome, but its short plasmatic half-life limits its use. Herein, we report, for the first time, the encapsulation of MCC950 in poly(ethylene glycol) (PEG) liposomes (LPs) that are specifically functionalized with an antibody against Frizzled 1 (FZD1), a g-coupled protein involved in the WNT pathway and overexpressed on inflammasome-activated macrophages. MCC950, encapsulated into PEG-LP formulations conjugated with an anti-FZD1 antibody, inhibits the NLRP3 inflammasome activation at concentrations 10 times lower than that of the free drug in THP-1 cells. Luminescent carbon dots (CDs) were also co-encapsulated with MCC950 in LPs to obtain optically traceable nanoformulations that have proved the enhanced ability of the targeted LPs to be internalized into THP-1 cells with respect to their nontargeted counterparts. Our results suggest that MCC950 encapsulation into targeted LPs represents a valuable strategy to achieve reformulation of the NLRP3 inhibitor, able to significantly curtail the threshold of MCC950 doses for inhibiting inflammasome activation, thus offering a new therapeutic approach.


Subject(s)
Indenes , Non-alcoholic Fatty Liver Disease , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Liposomes , Sulfones/pharmacology , Biological Availability , Lipopolysaccharides/pharmacology , Sulfonamides/pharmacology , Furans , Disease Models, Animal
5.
Molecules ; 28(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446794

ABSTRACT

Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential to make them suitable for their technological applications, including those in the environmental field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a siloxane matrix is reported. The chemical composition and morphology of the deposited films were investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to achieve 85% MB degradation upon 180 min of UV irradiation.


Subject(s)
Carbon , Nanocomposites , Spectroscopy, Fourier Transform Infrared , Titanium/chemistry , Nanocomposites/chemistry , Methylene Blue/chemistry , Catalysis
6.
Materials (Basel) ; 16(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36837327

ABSTRACT

The removal of pollutants, such as heavy metals, aromatic compounds, dyes, pesticides and pharmaceuticals, from water is still an open challenge. Many methods have been developed and exploited for the purification of water from contaminants, including photocatalytic degradation, biological treatment, adsorption and chemical precipitation. Absorption-based techniques are still considered among the most efficient and commonly used approaches thanks to their operational simplicity. In recent years, polydopamine-coated magnetic nanoparticles have emerged for the uptake of heavy metals in water treatment, since they combine specific affinity towards pollutants and magnetic separation capacity. In this context, this work focuses on the synthesis of polydopamine (PDA)-coated Super Paramagnetic Iron Oxide Nanoparticles (PDA@SPIONs) as adsorbents for Cu2+ ions, designed to serve as functional nanostructures for the removal of Cu2+ from water by applying a magnetic field. The synthetic parameters, including the amount of SPIONs and PDA, were thoroughly investigated to define their effects on the nanostructure features and properties. Subsequently, the ability of the magnetic nanostructures to bind metal ions was assessed on Cu2+-containing solutions. A systematic investigation of the prepared functional nanostructures was carried out by means of complementary spectroscopic, morphological and magnetic techniques. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements were performed in order to estimate the Cu2+ binding ability. The overall results indicate that these nanostructures hold great promise for future bioremediation applications.

7.
Sci Total Environ ; 857(Pt 2): 159309, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36216062

ABSTRACT

In the last decades particular attention is being paid to the efficient and effective removal of compounds of emerging concern (CECs) present in wastewater before their eventual reuse or disposal. Several technologies have been developed for the degradation of CECs in aqueous matrix, in this regard advanced oxidation processes (AOPs) represent a nascent technological solution developed on a laboratory scale with applications on a prototype scale. The experimental evidences have shown that AOPs processes can oxidize numerous organic compounds in a much faster and more efficient way than that of the most common disinfection processes. The most common AOPs processes are those that involve the use of H2O2/UV, O3/UV, H2O2/O3, H2O2/O3/UV, Fenton and photo-Fenton. The aim of this work is to illustrate the results of a comparative LCA study of a laboratory scale UV-C photoreactor for the tertiary treatment of urban wastewater of three treatment systems (UV-C, UV-C + H2O2 e UV-C + TiO2). In particular, the specific objective is to evaluate, from an environmental point of view, an innovative advanced oxidation system based on nanostructures TiO2 immobilized on a stainless steel mesh. Compared to the UV-C photolysis reference system, the addition of hydrogen peroxide reduces the total environmental impact of the system by almost 75 %, while the use of the stainless-steel mesh coated by the nanostructures titanium dioxide reduces the UV-C environmental impact by 30 %. These results are due to the lower energy consumption of these last treatments compared to photolysis alone. The main impacts of the three systems are related to the electric power consumption of the centrifugal pump (63-64 %) and of the UV-C lamp (32-33 %). The LCA applied to these systems has shown that TiO2 assisted photocatalysis is not yet advantageous from an environmental point of view and that, therefore, the efficiency of the system needs to be improved.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Wastewater/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/analysis , Ultraviolet Rays , Oxidation-Reduction , Life Cycle Stages , Water Purification/methods
8.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202535

ABSTRACT

Over the last decade, the attractive properties of CsPbBr3 nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction mixture in combination with the specific synthetic methodology is crucial, both for further elucidating the fundamental characteristics of this class of materials and for their manufacturing towards technological applications. This work aims to shed light on this aspect by synthesizing CsPbBr3 NPs by means of two well-assessed synthetic procedures, namely, hot injection (HI) and ligand-assisted reprecipitation (LARP) in non-polar solvents, using PbBr2 and Cs2CO3 as precursors in the presence of already widely investigated ligands. The overall goal is to study and compare the properties of the NPs to understand how each synthetic method influences the NPs' size and/or the optical properties. Reaction composition and conditions are purposely tuned towards the production of nanocubes with narrow size distribution, high emission properties, and the highest achievable concentration. As a result, the formation of bulk crystals as precipitate in LARP limits the achievement of a highly concentrated NP solution. The size of the NPs obtained by LARP seems to be poorly affected by the ligands' nature and the excess bromide, as consequence of bromide-rich solvation agents, effectively results in NPs with excellent emission properties. In contrast, NPs synthesized by HI exhibit high reaction yield, diffusion growth-controlled size, and less striking emission properties, probably ascribed to a bromide-deficient condition.

9.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364532

ABSTRACT

We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic−inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel mesh was selected as an effective support for the possible future technological application of the coating for photocatalytically assisted water depollution. The prepared coatings were thoroughly investigated from the chemical and morphological points of view and were demonstrated to be photocatalytically active in the degradation of an organic molecule, used as a pollutant model, in water upon UV light irradiation. In order to optimize the photocatalytic performance, different approaches were investigated for the coating's realization, namely (i) the control of the deposition time and (ii) the application of a postdeposition O2 plasma treatment on the pristine coatings. Both strategies were found to be able to increase the photocatalytic activity, and, remarkably, their combination resulted in a further enhancement of the photoactivity. Indeed, the proposed combined approach allowed a three-fold increase in the kinetic constant of the degradation reaction of the model dye methylene blue with respect to the pristine coating. Interestingly, the chemical and morphological characterizations of all the prepared coatings were able to account for the enhancement of the photocatalytic performance. Indeed, the presence of the TiO2 nanoparticles on the outmost surface of the film confirmed the accessibility of the photocatalytic sites in the nanocomposite and reasonably explained the enhanced photocatalytic performance. In addition, the sustained photoactivity (>5 cycles of use) of the nanocomposites was demonstrated.

10.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35893513

ABSTRACT

Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu2-xS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu2-xS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu2-xS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron-phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm2 power density.

11.
Molecules ; 26(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299522

ABSTRACT

Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine. An essential feature for biomedical application of MSNs is limiting MSN size in the sub-micrometer regime to control uptake and cell viability. However, careful size tuning in such a regime remains still challenging. We aim to tackling this issue by developing two synthetic procedures for MSN size modulation, performed in homogenous aqueous/ethanol solution or two-phase aqueous/ethyl acetate system. Both approaches make use of tetraethyl orthosilicate as precursor, in the presence of cetyltrimethylammonium bromide, as structure-directing agent, and NaOH, as base-catalyst. NaOH catalyzed syntheses usually require high temperature (>80 °C) and large reaction medium volume to trigger MSN formation and limit aggregation. Here, a successful modulation of MSNs size from 40 up to 150 nm is demonstrated to be achieved by purposely balancing synthesis conditions, being able, in addition, to keep reaction temperature not higher than 50 °C (30 °C and 50 °C, respectively) and reaction mixture volume low. Through a comprehensive and in-depth systematic morphological and structural investigation, the mechanism and kinetics that sustain the control of MSNs size in such low dimensional regime are defined, highlighting that modulation of size and pores of the structures are mainly mediated by base concentration, reaction time and temperature and ageing, for the homogenous phase approach, and by temperature for the two-phase synthesis. Finally, an in vitro study is performed on bEnd.3 cells to investigate on the cytotoxicity of the MNSs.

12.
Curr Opin Chem Eng ; 34: 100716, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36348653

ABSTRACT

The COVID 19 pandemic has demonstrated the need for urgent access to measures to contain the spread of the virus and bacteria. In this frame, the use of photocatalytic nanomaterials can be a valuable alternative to chemical disinfectants without the limitation of generating polluting by-products and with the advantage of re-usability in time. Here, on the basis of up-to-date literature reports, the use of TiO2-based photocatalytic nanomaterials in disinfection will be overviewed, considering the peculiar nanocatalysts assisted inactivation mechanisms. The potential of this class of photocatalysts for air, surface and water disinfection will be highlighted, critically revising the recent achievements in view of their potential in real application.

13.
RSC Adv ; 11(19): 11536-11540, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423602

ABSTRACT

In this work we demonstrated that the peripherical thioacetylation of a bithiophene-DPP molecule can greatly influence the solid-state properties triggering the formation of NIR emitting J-aggregates in both bithiophene-DPP films and nanoparticles. The morphology and the kinetic and thermal stability of the organic nanoparticles were also investigated.

14.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32628283

ABSTRACT

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Subject(s)
Asialoglycoprotein Receptor/metabolism , Carbohydrates/chemistry , Carcinoma, Hepatocellular/diagnostic imaging , Gold , Magnetic Iron Oxide Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide , Sulfhydryl Compounds/chemistry , Humans , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging
15.
Molecules ; 25(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604749

ABSTRACT

Fabrication of heterostructures by merging two or more materials in a single object. The domains at the nanoscale represent a viable strategy to purposely address materials' properties for applications in several fields such as catalysis, biomedicine, and energy conversion. In this case, solution-phase seeded growth and the hot-injection method are ingeniously combined to fabricate TiO2/PbS heterostructures. The interest in such hybrid nanostructures arises from their absorption properties that make them advantageous candidates as solar cell materials for more efficient solar light harvesting and improved light conversion. Due to the strong lattice mismatch between TiO2 and PbS, the yield of the hybrid structure and the control over its properties are challenging. In this study, a systematic investigation of the heterostructure synthesis as a function of the experimental conditions (such as seeds' surface chemistry, reaction temperature, and precursor concentration), its topology, structural properties, and optical properties are carried out. The morphological and chemical characterizations confirm the formation of small dots of PbS by decorating the oleylamine surface capped TiO2 nanocrystals under temperature control. Remarkably, structural characterization points out that the formation of heterostructures is accompanied by modification of the crystallinity of the TiO2 domain, which is mainly ascribed to lattice distortion. This result is also confirmed by photoluminescence spectroscopy, which shows intense emission in the visible range. This originated from self-trapped excitons, defects, and trap emissive states.


Subject(s)
Lead/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Titanium/chemistry , Nanoparticles/ultrastructure , Solar Energy , Surface Properties
16.
Materials (Basel) ; 12(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382373

ABSTRACT

Photoactive nanomaterials are receiving increasing attention due to their potential application to light-driven degradation of water and gas-phase pollutants. However, to exploit the strong potential of photoactive materials and access their properties require a fine tuning of their size/shape dependent chemical-physical properties and on the ability to integrate them in photo-reactors or to deposit them on large surfaces. Therefore, the synthetic approach, as well as post-synthesis manipulation could strongly affect the final photocatalytic properties of nanomaterials. The potential application of photoactive nanomaterials in the environmental field includes the abatement of organic pollutant in water, water disinfection, and abatement of gas-phase pollutants in outdoor and indoor applications.

17.
Materials (Basel) ; 12(11)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181637

ABSTRACT

Increasing environmental concern, related to pollution and clean energy demand, have urged the development of new smart solutions profiting from nanotechnology, including the renowned nanomaterial-assisted photocatalytic degradation of pollutants. In this framework, increasing efforts are devoted to the development of TiO2-based nanomaterials with improved photocatalytic activity. A plethora of synthesis routes to obtain high quality TiO2-based nanomaterials is currently available. Nonetheless, large-scale production and the application of nanosized TiO2 is still hampered by technological issues and the high cost related to the capability to obtain TiO2 nanoparticles with high reaction yield and adequate morphological and structural control. The present review aims at providing a selection of synthetic approaches suitable for large-scale production of mesoporous TiO2-based photocatalysts due to its unique features including high specific surface area, improved ultraviolet (UV) radiation absorption, high density of surface hydroxyl groups, and significant ability for further surface functionalization The overviewed synthetic strategies have been selected and classified according to the following criteria (i) high reaction yield, (ii) reliable synthesis scale-up and (iii) adequate control over morphological, structural and textural features. Potential environmental applications of such nanostructures including water remediation and air purification are also discussed.

18.
Materials (Basel) ; 12(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083308

ABSTRACT

Plasmonic photo-thermal therapy (PPTT) is a minimally invasive, drug-free, therapy based on the properties of noble metal nanoparticles, able to convert a bio-transparent electromagnetic radiation into heat. PPTT has been used against cancer and other diseases. Herein, we demonstrate an antimicrobial methodology based on the properties of gold nanorods (GNRs). Under a resonant laser irradiation GNRs become highly efficient light to heat nano-converters extremely useful for PPTT applications. The concept here is to assess the antimicrobial effect of easy to synthesize, suitably purified, water-dispersible GNRs on Escherichia coli bacteria. A control on the GNRs concentration used for the process has been demonstrated critical in order to rule out cytotoxic effects on the cells, and still to be able to generate, under a near infrared illumination, an adequate amount of heat suited to increase the temperature up to ≈50 °C in about 5 min. Viability experiments evidenced that the proposed system accomplished a killing efficiency suitable to reducing the Escherichia coli population of about 2 log CFU (colony-forming unit).

19.
ACS Omega ; 3(5): 4959-4967, 2018 May 31.
Article in English | MEDLINE | ID: mdl-30221229

ABSTRACT

The surface of gold nanorods (Au NRs) has been appropriately engineered to achieve a suitable interface for bioconjugation with horse heart cytochrome c (HCc). HCc, an extensively studied and well-characterized protein, represents an ideal model for nanoparticle (NP)-protein conjugation studies because of its small size, high stability, and commercial availability. Here, the native state of the protein has been demonstrated for the first time, by means of Raman spectroscopy, to be retained upon conjugation with the anisotropic Au nanostructures, thus validating the proposed protocol as specifically suited to mostly preserve the plasmonic properties of the NRs and to retain the structure of the protein. The successful creation of such bioconjugates with the retention of the protein structure and function along with the preservation of the NP properties represents a challenging but essential task, as it provides the only way to access functional hybrid systems with potential applications in biotechnology, medicine, and catalysis. In this perspective, the organic capping surrounding the Au NRs plays a key role, as it represents the functional interface for the conjugation step. Cetyltrimethylammonium bromide-coated Au NRs, prepared by using a seed-mediated synthetic route, have been wrapped with polyacrylic acid (PAA) by means of electrostatic interactions following a layer-by-layer approach. The resulting water-dispersible negatively charged AuNRs@PAA NPs have then been electrostatically bound to the positively charged HCc. The bioconjugation procedure has been thoroughly monitored by the combined analysis of UV-vis absorption, resonance Raman and Fourier transform infrared spectroscopies, transmission electron microscopy microscopy, and ζ-potential, which verified the successful conjugation of the protein to the nanorods.

20.
Colloids Surf B Biointerfaces ; 172: 362-371, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30189387

ABSTRACT

Biological processes using microorganisms for nanoparticle synthesis are appealing as eco-friendly nanofactories. The response of the photosynthetic bacterium Rhodobacter sphaeroides to gold exposure and its reducing capability of Au(III) to produce stable gold nanoparticles (AuNPs), using metabolically active bacteria and quiescent biomass, is reported in this study. In the former case, bacterial cells were grown in presence of gold chloride at physiological pH. Gold exposure was found to cause a significant increase of the lag-phase duration at concentrations higher than 10 µM, suggesting the involvement of a resistance mechanism activated by Au(III). Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) analysis of bacterial cells confirmed the extracellular formation of AuNPs. Further studies were carried out on metabolically quiescent biomass incubated with gold chloride solution. The biosynthesized AuNPs were spherical in shape with an average size of 10 ±â€¯3 nm, as analysed by Transmission Electron Microscopy (TEM). The nanoparticles were hydrophilic and stable against aggregation for several months. In order to identify the functional groups responsible for the reduction and stabilization of nanoparticles, AuNPs were analysed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), X-ray Fluorescence Spectrometry (XRF) and X-ray Absorption Spectroscopy (XAS) measurements. The obtained results indicate that gold ions bind to functional groups of cell membrane and are subsequently reduced by reducing sugars to gold nanoparticles and capped by a protein/peptide coat. Gold nanoparticles demonstrated to be efficient homogeneous catalysts in the degradation of nitroaromatic compounds.


Subject(s)
Gold/toxicity , Metal Nanoparticles/toxicity , Photosynthesis , Rhodobacter sphaeroides/metabolism , Anaerobiosis , Biomass , Catalysis , Metal Nanoparticles/ultrastructure , Photosynthesis/drug effects , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/growth & development , Rhodobacter sphaeroides/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...