Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29255796

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cultured rat hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for glutamate receptor subunits, Ca2+- and calmodulin-dependent protein kinase IIß (CaMKIIß) and BDNF. Downregulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC, and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dendrites/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Hippocampus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Animals , Animals, Outbred Strains , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Female , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Hippocampus/cytology , Humans , Male , Microarray Analysis , Microelectrodes , RNA Transport/physiology , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Synaptosomes/metabolism
2.
J Neurosci ; 35(8): 3319-29, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25716833

ABSTRACT

The neurotrophin brain-derived neurotrophic factor (BDNF) mediates activity-dependent long-term changes of synaptic strength in the CNS. The effects of BDNF are partly mediated by stimulation of local translation, with consequent alterations in the synaptic proteome. The ubiquitin-proteasome system (UPS) also plays an important role in protein homeostasis at the synapse by regulating synaptic activity. However, whether BDNF acts on the UPS to mediate the effects on long-term synaptic potentiation (LTP) has not been investigated. In the present study, we show similar and nonadditive effects of BDNF and proteasome inhibition on the early phase of synaptic potentiation (E-LTP) induced by theta-burst stimulation of rat hippocampal CA1 synapses. The effects of BDNF were blocked by the proteasome activator IU1, suggesting that the neurotrophin acts by decreasing proteasome activity. Accordingly, BDNF downregulated the proteasome activity in cultured hippocampal neurons and in hippocampal synaptoneurosomes. Furthermore, BDNF increased the activity of the deubiquitinating enzyme UchL1 in synaptoneurosomes and upregulated free ubiquitin. In contrast to the effects on posttetanic potentiation, proteasome activity was required for BDNF-mediated LTP. These results show a novel role for BDNF in UPS regulation at the synapse, which is likely to act together with the increased translation activity in the regulation of the synaptic proteome during E-LTP.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , CA1 Region, Hippocampal/metabolism , Long-Term Potentiation , Proteasome Endopeptidase Complex/metabolism , Animals , CA1 Region, Hippocampal/physiology , Cells, Cultured , Male , Proteasome Endopeptidase Complex/drug effects , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Synaptosomes/drug effects , Synaptosomes/metabolism , Theta Rhythm , Ubiquitin/metabolism , Ubiquitin Thiolesterase/metabolism
3.
Neuropharmacology ; 76 Pt C: 639-56, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23602987

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/physiology , Protein Biosynthesis/physiology , Signal Transduction/physiology , Synaptic Transmission/physiology , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Humans , Protein Biosynthesis/drug effects , Receptor, trkB/metabolism , Signal Transduction/drug effects
4.
PLoS One ; 8(1): e53793, 2013.
Article in English | MEDLINE | ID: mdl-23326507

ABSTRACT

BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus/metabolism , Long-Term Potentiation/genetics , Neurons/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 2/genetics , Animals , Anisomycin/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Dactinomycin/pharmacology , Gene Expression Regulation, Developmental , Glutamic Acid/genetics , Glutamic Acid/metabolism , Hippocampus/cytology , Long-Term Potentiation/physiology , Neurites/metabolism , Neuronal Plasticity/genetics , Neurons/cytology , Rats , Synapses/genetics , Synapses/metabolism , Up-Regulation/drug effects , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
5.
Prog Neurobiol ; 92(4): 505-16, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20713125

ABSTRACT

The neurotrophin brain-derived neurotrophic factor (BDNF) plays a key role in synaptic plasticity, in part due to changes in local protein synthesis. Activation of TrkB (tropomyosin-related kinase B) receptors for BDNF triggers several parallel signaling pathways, including the Ras/ERK, the phosphatidylinositol 3-kinase (PI3-K) and the phospholipase C-γ pathways. Recent studies have elucidated some of the signaling mechanisms that contribute to the regulation of translation activity by BDNF, through modulation of initiation and elongation phases, but the resulting changes in the proteome are not yet fully characterized. The proteins synthesized in response to activation of TrkB receptors by BDNF depend on the mRNAs that are available locally, after delivery and transport along dendrites. Recent studies have shown that BDNF may also play a regulatory role at this level. Furthermore, BDNF regulates transcription activity, thereby affecting the array of mRNAs available to be transported along dendrites. This review highlights the recent advances in the understanding of the diversity of mechanisms that contribute to the regulation of the synaptic proteome by BDNF, which may account for its role in synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/physiology , Signal Transduction/physiology , Synapses/metabolism , Animals , Brain/cytology , Brain-Derived Neurotrophic Factor/genetics , Dendrites/metabolism , Gene Expression Regulation/drug effects , Models, Biological , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/metabolism , RNA, Messenger/metabolism , Receptor, trkB/metabolism , Synapses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...