Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 138(8): 1459-64, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12721101

ABSTRACT

1. Ezetimibe (1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone) and its analog SCH48461 are potent and selective cholesterol absorption inhibitors that inhibit the transport of cholesterol across the intestinal wall, thereby lowering plasma cholesterol. 2. After a dose response for ezetimibe in rats was established, experiments were conducted to determine whether acute administration could alter hepatic or intestinal cholesterol synthesis. To determine whether this class of intestinal cholesterol absorption inhibitors could discriminate between newly synthesized cholesterol in the intestine versus exogenously administered cholesterol, rats were intraduodenally dosed with (14)C-cholesterol and (3)H-mevalonate, and mesenteric lymph was analyzed for radiolabeled cholesterol and cholesteryl ester content. 3. Ezetimibe attenuated diet-induced hypercholesterolemia 60-94% at doses of 0.1-3 mg x kg(-1) in rats. A single administration of ezetimibe did not have a direct effect on intestinal or hepatic cholesterol synthesis, while ketoconazole significantly inhibited cholesterol synthesis after a single dose. The ezetimibe analog, SCH48461, inhibited the movement of exogenously administered cholesterol into lymph, but did not affect the appearance of newly synthesized cholesterol into lymph. 4. These data suggest that this class of cholesterol absorption inhibitors does discriminate by blocking the movement of exogenous cholesterol in the enterocyte before it reaches the intracellular cholesterol pool to be incorporated into intestinal lipoproteins, without affecting the incorporation of newly synthesized cholesterol into intestinal lipoproteins.


Subject(s)
Anticholesteremic Agents/pharmacology , Azetidines/pharmacology , Cholesterol/metabolism , Intestinal Absorption/drug effects , Liver/drug effects , Animals , Azetidines/chemistry , Cholesterol/biosynthesis , Dose-Response Relationship, Drug , Ezetimibe , Hypercholesterolemia/metabolism , Intestinal Absorption/physiology , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
2.
Biochim Biophys Acta ; 1580(1): 77-93, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11923102

ABSTRACT

The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats. Pools of cDNAs prepared from rat intestinal cells enriched in enterocytes were introduced into BW5147 cells and screened for SCH354909 binding. Several independent clones were isolated and all found to encode the scavenger receptor class B, type I (SR-BI), a protein suggested by others to play a role in cholesterol absorption. SCH354909 bound to Chinese hamster ovary (CHO) cells expressing SR-BI in specific and saturable fashion and with high affinity (K(d) approximately 18 nM). Overexpression of SR-BI in CHO cells resulted in increased cholesterol uptake that was blocked by micromolar concentrations of ezetimibe. Analysis of rat intestinal sections by in situ hybridization demonstrated that SR-BI expression was restricted to enterocytes. Cholesterol absorption was determined in SR-B1 knockout mice using both an acute, 2-h, assay and a more chronic fecal dual isotope ratio method. The level of intestinal cholesterol uptake and absorption was similar to that seen in wild-type mice. When assayed in the SR-B1 knockout mice, the dose of ezetimibe required to inhibit hepatic cholesterol accumulation induced by a cholesterol-containing 'western' diet was similar to wild-type mice. Thus, the binding of ezetimibe to cells expressing SR-B1 and the functional blockade of SR-B1-mediated cholesterol absorption in vitro suggest that SR-B1 plays a role in intestinal cholesterol metabolism and the inhibitory activity of ezetimibe. In contrast studies with SR-B1 knockout mice suggest that SR-B1 is not essential for intestinal cholesterol absorption or the activity of ezetimibe.


Subject(s)
CD36 Antigens/metabolism , Cholesterol/metabolism , Intestinal Mucosa/metabolism , Membrane Proteins , Receptors, Immunologic , Receptors, Lipoprotein , Animals , Anticholesteremic Agents/pharmacology , Azetidines/pharmacology , CD36 Antigens/biosynthesis , CD36 Antigens/genetics , CHO Cells , Cholesterol/blood , Cloning, Molecular , Cricetinae , Dose-Response Relationship, Drug , Ezetimibe , Flow Cytometry , Gene Library , In Situ Hybridization , Intestinal Absorption/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Scavenger , Scavenger Receptors, Class B
SELECTION OF CITATIONS
SEARCH DETAIL
...