Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 109(4): 571-575, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33600754

ABSTRACT

Recent research resolves the challenging problem of building biophysically plausible spiking neural models that are also capable of complex information processing. This advance creates new opportunities in neuroscience and neuromorphic engineering, which we discussed at an online focus meeting.


Subject(s)
Biomedical Engineering/trends , Models, Neurological , Neural Networks, Computer , Neurosciences/trends , Biomedical Engineering/methods , Forecasting , Humans , Neurons/physiology , Neurosciences/methods
2.
Brain Topogr ; 32(2): 315-331, 2019 03.
Article in English | MEDLINE | ID: mdl-30498872

ABSTRACT

As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As they stopped responding to the stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain networks reflecting different degrees of sleep depth.


Subject(s)
Behavior/physiology , Brain Mapping/methods , Electroencephalography , Neural Pathways/physiology , Sleepiness , Acoustic Stimulation , Adult , Alpha Rhythm/physiology , Data Interpretation, Statistical , Female , Humans , Machine Learning , Male , Psychomotor Performance , Reaction Time/physiology , Theta Rhythm/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...