Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 18(5): 922-931, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31478166

ABSTRACT

Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.


Subject(s)
Cerebellum/physiology , Dopamine/physiology , Dopaminergic Neurons/physiology , Functional Laterality/physiology , Synaptic Transmission/physiology , Animals , Male , Mice , Mice, Inbred C57BL
2.
Synapse ; : e22074, 2018 Oct 13.
Article in English | MEDLINE | ID: mdl-30317673

ABSTRACT

Midbrain dopaminergic neurons project to and modulate multiple highly interconnected modules of the basal ganglia, limbic system, and frontal cortex. Dopamine regulates behaviors associated with action selection in the striatum, reward in the nucleus accumbens (NAc), emotional processing in the amygdala, and executive functioning in the medial prefrontal cortex (mPFC). The multifunctionality of dopamine likely occurs at the individual synapses, with varied levels of phasic dopamine release acting on different receptor populations. This study aimed to characterize specific aspects of stimulation-evoked phasic dopamine transmission, beyond simple dopamine release, using in vivo fixed potential amperometry with carbon fiber recording microelectrodes positioned in either the dorsal striatum, NAc, amygdala, or mPFC of anesthetized mice. To summarize results, the present study found that the striatum and NAc had increased stimulation-evoked phasic dopamine release, faster dopamine uptake (leading to restricted dopamine diffusion), weaker autoreceptor functioning, greater supply levels of available dopamine, and increased dopaminergic responses to DAT blockade compared to the amygdala and mPFC. Overall, these findings indicate that phasic dopamine may have different modes of communication between striatal and corticolimbic regions, with the first being profuse in concentration, rapid, and synaptically confined and the second being more limited in concentration but longer lasting and spatially dispersed. An improved understanding of regional differences in dopamine transmission can lead to more efficient treatments for disorders related to dopamine dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...