Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Spinal Disord ; 13(4): 350-5, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10941896

ABSTRACT

Posterior cervical internal fixation has long been accomplished using wires, hooks, and rods. More recently, the cervical lateral mass screw and plate or rod systems have been used effectively in unstable lower cervical spine disorders. Each form of fixation has its advantages and disadvantages. Interspinous wiring and lateral mass screw placement obviate canal penetration in the cervical region but are associated with a potential neurologic risk as a result of canal encroachment. Minor canal intrusion by laminar hooks in the thoracic spine pose a lesser neurologic risk than in the cervical region. To exploit the benefits and safety features of spinal instrumentation, a combination plate rod construct (PRC) has been developed that obviates canal penetration in the cervical region by way of lateral mass and cervical pedicle screw fixation and hooks or wires in the thoracic spine. A biomechanical analysis of the PRC device was performed and compared with the in vivo maximal load data of the cervical spine and established maximal load data of the Roy-Camille posterior cervical fixation system. The PRC has greater strength and resistance to failure than is necessary to sustain maximal in vivo cervical spine loads, and it has also compared favorably with the parameters of the Roy-Camille system. The PRC device, or variations on it, is an excellent option for spinal fixation across the cervicothoracic junction because of its superior biomechanical qualities and versatility in stabilizing a complex anatomic junction of the spine.


Subject(s)
Bone Nails , Bone Plates , Cervical Vertebrae/surgery , Spinal Diseases/surgery , Thoracic Vertebrae/surgery , Biomechanical Phenomena , Bone Screws , Cadaver , Humans , Torsion Abnormality , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...