Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 281(51): 39262-72, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17015450

ABSTRACT

The roles of Asp(75), Asp(78), and Glu(83) of the (75)DPSDVARVE(83) element of Mycobacterium smegmatis GTP-dependent phosphoenolpyruvate (PEP) carboxykinase (GTP-PEPCK) were investigated. Asp(78) and Glu(83) are fully conserved in GTP-PEP-CKs. The human PEPCK crystal structure suggests that Asp(78) influences Tyr(220); Tyr(220) helps to position bound PEP, and Glu(83) interacts with Arg(81). Experimental data on other PEPCKs indicate that Arg(81) binds PEP, and the phosphate of PEP interacts with Mn(2+) of metal site 1 for catalysis. We found that D78A and E83A replacements severely reduced activity. E83A substitution raised the apparent K(m) value for Mn(2+) 170-fold. In contrast, Asp(75) is highly but not fully conserved; natural substitutions are Ala, Asn, Gln, or Ser. Such substitutions, when engineered, in M. smegmatis enzyme caused the following. 1) For oxaloacetate synthesis, V(max) decreased 1.4-4-fold. K(m) values for PEP and Mn(2+) increased 3-9- and 1.2-10-fold, respectively. K(m) values for GDP and bicarbonate changed little. 2) For PEP formation, V(max) increased 1.5-2.7-fold. K(m) values for oxaloacetate increased 2-2.8-fold. The substitutions did not change the secondary structure of protein significantly. The kinetic effects are rationalized as follows. In E83A the loss of Glu(83)-Arg(81) interaction affected Arg(81)-PEP association. D78A change altered the Tyr(220)-PEP interaction. These events perturbed PEP-Mn(2+) interaction and consequently affected catalysis severely. In contrast, substitutions at Asp(75), a site far from bound PEP, brought subtle effects, lowering oxaloacetate formation rate but enhancing PEP formation rate. It is likely that Asp(75) substitutions affected PEP-Mn(2+) interaction by changing the positions of Asp(78), Arg(81), and Glu(83), which translated to differential effects on two directions.


Subject(s)
Mycobacterium smegmatis/enzymology , Phosphoenolpyruvate Carboxykinase (GTP)/physiology , Amino Acid Sequence , Aspartic Acid/chemistry , Base Sequence , Binding Sites , Cytosol/metabolism , Glutamic Acid/chemistry , Humans , Models, Chemical , Models, Molecular , Molecular Sequence Data , Oxaloacetic Acid/chemistry , Phosphoenolpyruvate Carboxykinase (GTP)/chemistry , Protein Binding , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...