Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(10): 261, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37500990

ABSTRACT

The current industrial and human activities scenario has accelerated the widespread use of endocrine-disrupting compounds (EDCs), which can be found in everyday products, including plastic containers, bottles, toys, cosmetics, etc., but can pose a severe risk to human health and the environment. In this regard, fungal bioremediation appears as a green and cost-effective approach to removing pollutants from water resources. Besides, immobilizing fungal cells onto nanofibrous membranes appears as an innovative strategy to improve remediation performance by allowing the adsorption and degradation to occur simultaneously. Herein, we developed a novel nanostructured bioremediation platform based on polyacrylonitrile nanofibrous membrane (PAN NFM) as supporting material for immobilizing an endophytic fungus to remove bisphenol A (BPA), a typical EDC. The endophytic strain was isolated from Handroanthus impetiginosus leaves and identified as Phanerochaete sp. H2 by molecular methods. The successful assembly of fungus onto the PAN NFM surface was confirmed by scanning electron microscopy (SEM). Compared with free fungus cells, the PAN@H2 NFM displayed a high BPA removal efficiency (above 85%) at an initial concentration of 5 ppm, suggesting synergistic removal by simultaneous adsorption and biotransformation. Moreover, the biotransformation pathway was investigated, and the chemical structures of fungal metabolites of BPA were identified by ultra-high performance liquid chromatography - high-resolution mass (UHPLC-HRMS) analysis. In general, our results suggest that by combining the advantages of enzymatic activity and nanofibrous structure, the novel platform has the potential to be applied in the bioremediation of varied EDCs or even other pollutants found in water resources.


Subject(s)
Nanofibers , Tabebuia , Water Pollutants, Chemical , Humans , Nanofibers/chemistry , Phenols/analysis , Fungi , Water Pollutants, Chemical/analysis
2.
Appl Biochem Biotechnol ; 190(4): 1498-1511, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31782089

ABSTRACT

The filamentous fungus Trametes versicolor is a rich source of laccase (Tvlac). Laccases catalyze reactions that convert substituted phenol substrates into diverse derivatives through aromatic oxidation. We investigated methyl p-coumarate, methyl ferulate, and methyl caffeate biotransformation by Trametes versicolor ATCC 200801. Despite substrate similarity, the biotransformation reactions varied widely. Only methyl p-coumarate was converted into three derivatives. We isolated and identified the chemical structures of such derivatives by NMR and IR analysis. Hydroxylation, methylation, and hydrolysis were the main reactions resulting from the studied biotransformation. We also analyzed the interactions between Tvlac (PDB ID: 1GYC) and the three phenolic substrates by molecular docking simulations. The substituents in the phenol ring influenced substrate conformation and orientation in the Tvlac site. The biotransformation reaction selectivity correlated with the different binding energies to the Tvlac site. Our results demonstrated that docking studies successfully predict the biotransformation of cinnamic acid analogs by T. versicolor.


Subject(s)
Biotransformation , Molecular Docking Simulation , Phenols/chemistry , Polyporaceae/metabolism , Caffeic Acids/chemistry , Catalysis , Cinnamates/chemistry , Environmental Restoration and Remediation , Hydrolysis , Hydroxylation , Industrial Microbiology , Laccase/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Oxygen/chemistry , Solvents/chemistry , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...