Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(3): e0246184, 2021.
Article in English | MEDLINE | ID: mdl-33730037

ABSTRACT

Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals' brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats' brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.


Subject(s)
Arecaceae/chemistry , Brain/drug effects , Brain/metabolism , Dyslipidemias/metabolism , Memory/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Behavior, Animal/drug effects , Brain/physiopathology , Dyslipidemias/drug therapy , Dyslipidemias/physiopathology , Dyslipidemias/psychology , Male , Maze Learning/drug effects , Motor Activity/drug effects , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Seeds/chemistry
2.
Food Res Int ; 137: 109722, 2020 11.
Article in English | MEDLINE | ID: mdl-33233291

ABSTRACT

There is a need for searching new microalgae species, and the most suitable strategy to increase the cost-effectiveness of a microalgae culture system is to use resources of low costs, such as residues. This study aimed to evaluate the cultivation of microalgae isolated from the Brazilian Northeast region (Lagerheimia longiseta, Monoraphidium contortum, and Scenedesmus quadricauda) in an alternative medium of low cost (biocompost of discarded fruits and vegetables) with a view to possible applications in the food industry. Microalgae cultivated in the conventional synthetic medium was used as control. The cultivation of microalgae in the alternative medium allowed suitable cell growth, and improved the antioxidant activity and the levels of monounsaturated fatty acid and polyunsaturated fatty acid compared to the synthetic medium. The cultivation of S. quadricauda and L. longiseta species in the alternative medium resulted in increased protein content and/or total phenolic content, and improved health indices (lower levels of atherogenic, thrombogenic, and hypercholesterolemic saturated fatty acids indices, and higher levels of desired fatty acids index) compared to cultivation in synthetic medium. The cultivation of M. contortum in the alternative medium contributed to the production of higher lipid content, mainly saturated fatty acid (palmitic acid), which contributed negatively to the health indices. This study proved that S. quadricauda and L. longiseta microalga species from freshwaters have significant potential for distinct applications in functional food industries, and the biocompost of discarded fruits and vegetables is a suitable medium for microalgae cultivation.


Subject(s)
Microalgae , Biofuels , Biomass , Brazil , Fruit , Vegetables
3.
Pharmaceutics ; 12(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718016

ABSTRACT

Bacterial resistance has become an important public health problem. Bacteria have been acquiring mechanisms to resist the action of antimicrobial active pharmaceutical ingredients (API). Based on this, a promising alternative is the use of nanotechnology, since when the systems are presented in nanometric size, there is an increase in the interaction and concentration of the action at the target site improving the activity. Thus, this study aims to develop a polymeric nanoparticle (PN) composed of chitosan and hydroxypropylmethylcellulose, as an innovative strategy for the administration of an association between ceftriaxone and extract of S. brasiliensis, for the treatment of Enterobacteriaceae. From a Box-Behnken design, nanoparticles were obtained and evaluated using the DLS technique, obtaining the particle size between 440 and 1660 nm, IPD from 0.42 to 0.92, and positive charges. Morphological characteristics of PN by SEM revealed spherical morphology and sizes similar to DLS. Infrared spectroscopy showed no chemical interaction between the components of the formulation. The broth microdilution technique evaluated their antimicrobial activity, and a considerable improvement in the activity of the extract and the API compared to the free compounds was found, reaching an improvement of 133 times in the minimum inhibitory activity CRO.

4.
Bioresour Technol ; 221: 438-446, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27668876

ABSTRACT

The potential of four regional microalgae species was evaluated in relation to their cell growth and biomass production when cultured in the following alternative media: bio-composts of fruit/horticultural wastes (HB), sugarcane waste and vinasse (VB) chicken excrements (BCE), raw chicken manure (RCM), and municipal domestic sewage (MDS). The cultures were maintained under controlled conditions and their growth responses, productivities, biochemical compositions, and the ester profiles of their biomasses were compared to the results obtained in the synthetic media. The MDS and HB media demonstrated promising results for cultivation, especially of Chlorella sp., Chlamydomonas sp., and Lagerheimia longiseta, which demonstrated productivities superior to those seen when grown on the control media. The highest lipid levels were obtained with the HB medium. The data obtained demonstrated the viability of cultivating microalgae and producing biomass in alternative media prepared from MDS and HB effluents to produce biodiesel.


Subject(s)
Biomass , Fatty Acids/chemistry , Industrial Waste , Microalgae/chemistry , Sewage/microbiology , Biofuels , Chlorella/growth & development , Lipids/biosynthesis , Microalgae/growth & development , Saccharum
SELECTION OF CITATIONS
SEARCH DETAIL
...