Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 473: 81-89, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34455013

ABSTRACT

Age-related changes may affect the performance during fast walking speed. Although, several studies have been focused on the contribution of the prefrontal cortex (PFC) during challenging walking tasks, the neural mechanism underling fast walking speed in older people remain poorly understood. Therefore, the aim of this study was to investigate the influence of aging on PFC activity during overground walking at preferred and fast speeds. Twenty-five older adults (67.37 ± 5.31 years) and 24 young adults (22.70 ± 1.30 years) walked overground in two conditions: preferred speed and fast walking speed. Five trials were performed for each condition. A wireless functional near-infrared spectroscopy (fNIRS) system measured PFC activity. Gait parameters were evaluated using the GAITRite system. Overall, older adults presented higher PFC activity than young adults in both conditions. Speed-related change in PFC activity was observed for older adults, but not for young adults. Older adults significantly increased activity in the left PFC from the preferred to fast walking condition whereas young adults had similar levels of PFC activity across conditions. Our findings suggest that older adults need to recruit additional prefrontal cognitive resources to control walking, indicating a compensatory mechanism. In addition, left PFC seems to be involved in the modulation of gait speed in older adults.


Subject(s)
Spectroscopy, Near-Infrared , Walking , Aged , Gait , Humans , Prefrontal Cortex , Walking Speed , Young Adult
2.
Neurorehabil Neural Repair ; 35(5): 406-418, 2021 05.
Article in English | MEDLINE | ID: mdl-33754884

ABSTRACT

BACKGROUND: Dopaminergic medication improves gait in people with Parkinson disease (PD). However, it remains unclear if dopaminergic medication modulates cortical activity while walking. OBJECTIVE: We investigated the effects of dopaminergic medication on cortical activity during unobstructed walking and obstacle avoidance in people with PD. METHODS: A total of 23 individuals with PD, in both off (PDOFF) and on (PDON) medication states, and 30 healthy older adults (control group [CG]) performed unobstructed walking and obstacle avoidance conditions. Cortical activity was acquired through a combined functional near-infrared spectroscopy electroencephalography (EEG) system, along with gait parameters, through an electronic carpet. Prefrontal cortex (PFC) oxygenated hemoglobin (HbO2) and EEG absolute power from FCz, Cz, and CPz channels were calculated. RESULTS: HbO2 concentration reduced for people with PDOFF during obstacle avoidance compared with unobstructed walking. In contrast, both people with PDON and the CG had increased HbO2 concentration when avoiding obstacles compared with unobstructed walking. Dopaminergic medication increased step length, step velocity, and ß and γ power in the CPz channel, regardless of walking condition. Moreover, dopaminergic-related changes (ie, on-off) in FCz/CPz γ power were associated with dopaminergic-related changes in step length for both walking conditions. CONCLUSIONS: PD compromises the activation of the PFC during obstacle avoidance, and dopaminergic medication facilitates its recruitment. In addition, PD medication increases sensorimotor integration during walking by increasing posterior parietal cortex (CPz) activity. Increased γ power in the CPz and FCz channels is correlated with step length improvements achieved with dopaminergic medication during unobstructed walking and obstacle avoidance in PD.


Subject(s)
Cerebral Cortex/physiopathology , Dopamine Agents/pharmacology , Gait Disorders, Neurologic , Parkinson Disease , Psychomotor Performance , Walking , Aged , Cerebral Cortex/diagnostic imaging , Electroencephalography , Female , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Severity of Illness Index , Spectroscopy, Near-Infrared , Walking/physiology
3.
Neurorehabil Neural Repair ; 34(10): 915-924, 2020 10.
Article in English | MEDLINE | ID: mdl-32865134

ABSTRACT

BACKGROUND: Declines in gait parameters are common with aging and more pronounced in tasks with increased executive demand. However, the neural correlates of age-related gait impairments are not fully understood yet. OBJECTIVES: To investigate (a) the effects of aging on prefrontal cortex (PFC) activity and gait parameters during usual walking, obstacle crossing and dual-task walking and (b) the association between PFC activity and measures of gait and executive function. METHODS: Eighty-eight healthy individuals were distributed into 6 age-groups: 20-25 (G20), 30-35 (G30), 40-45 (G40), 50-55 (G50), 60-65 (G60), and 70-75 years (G70). Participants walked overground under 3 conditions: usual walking, obstacle crossing, and dual-task walking. Changes in oxygenated and deoxygenated hemoglobin in the PFC were recorded using functional near-infrared spectroscopy. Gait spatiotemporal parameters were assessed using an electronic walkway. Executive function was assessed through validated tests. RESULTS: Between-group differences on PFC activity were observed for all conditions. Multiple groups (ie, G30, G50, G60, and G70) showed increased PFC activity in at least one of the walking conditions. Young adults (G20 and G30) had the lowest levels of PFC activity while G60 had the highest levels. Only G70 showed reduced executive function and gait impairments (which were more pronounced during obstacle crossing and dual-task walking). PFC activity was related to gait and executive function. CONCLUSIONS: Aging causes a gradual increase in PFC activity during walking. This compensatory mechanism may reach the resource ceiling in the 70s, when reduced executive function limits its efficiency and gait impairments are observed.


Subject(s)
Aging/physiology , Executive Function/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Walking/physiology , Adult , Aged , Female , Functional Neuroimaging , Gait/physiology , Humans , Male , Middle Aged , Prefrontal Cortex/diagnostic imaging , Spectroscopy, Near-Infrared , Young Adult
4.
Hum Mov Sci ; 66: 1-8, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30889495

ABSTRACT

INTRODUCTION: Postural instability during walking and tripping over obstacles are the main causes of falls in people with Parkinson's disease (PD). Preliminary limited evidence suggests that the length of the prospective follow-up period affects falls prediction in PD, with shorter periods leading to more accurate prediction. Thus, the primary aim of the present study was to test the performance of center of pressure (CoP) variables during obstacle crossing to predict fall risk in people with PD during subsequent periods of four, six, and 12 months. We also compared CoP variables during obstacle crossing between fallers and non-fallers. METHODS: Forty-two individuals with PD, in mild to moderate stages, completed the baseline obstacle crossing assessment and reported falls for 12 months. Participants walked at their self-selected pace and were instructed to cross an obstacle (half knee height) positioned in the middle of an 8-m long pathway. A force platform was used to analyze CoP parameters of the stance phase of the trailing limb (most affected limb). The ability of each outcome measure to predict fall risk at four, six, and 12 months was assessed using receiver operating characteristic curve analyses. RESULTS: Ten individuals (23.8%) were considered fallers at four months, twelve individuals (28.5%) at six months, and twenty-one individuals (50%) at 12 months. CoP amplitude and CoP velocity in the mediolateral direction significantly predicted fall risk at four, six, and 12 months. As judged by the area under the curve, mediolateral CoP velocity showed the best performance at four months, while mediolateral CoP amplitude showed the best performance at six months. Fallers presented greater values of mediolateral CoP velocity and amplitude than non-fallers. CONCLUSION: These findings suggest that mediolateral CoP velocity and amplitude during obstacle crossing might be useful to predict fall risk in people with PD. Therefore, larger studies are encouraged.

SELECTION OF CITATIONS
SEARCH DETAIL
...