Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
ACS Catal ; 14(6): 4290-4300, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38510664

ABSTRACT

Interstitial carbon-doped RuO2 catalyst with the newly reported ruthenium oxycarbonate phase is a key component for low-temperature CO2 methanation. However, a crucial factor is the stability of interstitial carbon atoms, which can cause catalyst deactivation when removed during the reaction. In this work, the stabilization mechanism of the ruthenium oxycarbonate active phase under reaction conditions is studied by combining advanced operando spectroscopic tools with catalytic studies. Three sequential processes: carbon diffusion, metal oxide reduction, and decomposition of the oxycarbonate phase and their influence by the reaction conditions, are discussed. We present how the reaction variables and catalyst composition can promote carbon diffusion, stabilizing the oxycarbonate catalytically active phase under steady-state reaction conditions and maintaining catalyst activity and stability over long operation times. In addition, insights into the reaction mechanism and a detailed analysis of the catalyst composition that identifies an adequate balance between the two phases, i.e., ruthenium oxycarbonate and ruthenium metal, are provided to ensure an optimum catalytic behavior.

2.
J Am Chem Soc ; 146(3): 2024-2032, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206050

ABSTRACT

The CO2 hydrogenation reaction to produce methanol holds great significance as it contributes to achieving a CO2-neutral economy. Previous research identified isolated Cu+ species doping the oxide surface of a Cu-MgO-Al2O3-mixed oxide derived from a hydrotalcite precursor as the active site in CO2 hydrogenation, stabilizing monodentate formate species as a crucial intermediate in methanol synthesis. In this work, we present a molecular-level understanding of how surface water and hydroxyl groups play a crucial role in facilitating spontaneous CO2 activation at Cu+ sites and the formation of monodentate formate species. Computational evidence has been experimentally validated by comparing the catalytic performance of the Cu-MgO-Al2O3 catalyst with hydroxyl groups against that of its hydrophobic counterpart, where hydroxyl groups are blocked using an esterification method. Our work highlights the synergistic effect between doped Cu+ ions and adjacent hydroxyl groups, both of which serve as key parameters in regulating methanol production via CO2 hydrogenation. By elucidating the specific roles of these components, we contribute to advancing our understanding of the underlying mechanisms and provide valuable insights for optimizing methanol synthesis processes.

3.
Nat Commun ; 14(1): 7174, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935688

ABSTRACT

Zeolites containing Rh single sites stabilized by phosphorous were prepared through a one-pot synthesis method and are shown to have superior activity and selectivity for ethylene hydroformylation at low temperature (50 °C). Catalytic activity is ascribed to confined Rh2O3 clusters in the zeolite which evolve under reaction conditions into single Rh3+ sites. These Rh3+ sites are effectively stabilized in a Rh-(O)-P structure by using tetraethylphosphonium hydroxide as a template, which generates in situ phosphate species after H2 activation. In contrast to Rh2O3, confined Rh0 clusters appear less active in propanal production and ultimately transform into Rh(I)(CO)2 under similar reaction conditions. As a result, we show that it is possible to reduce the temperature of ethylene hydroformylation with a solid catalyst down to 50 °C, with good activity and high selectivity, by controlling the electronic and morphological properties of Rh species and the reaction conditions.

4.
Nat Mater ; 22(6): 762-768, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37142737

ABSTRACT

The generation of methane fuel using surplus renewable energy with CO2 as the carbon source enables both the decarbonization and substitution of fossil fuel feedstocks. However, high temperatures are usually required for the efficient activation of CO2. Here we present a solid catalyst synthesized using a mild, green hydrothermal synthesis that involves interstitial carbon doped into ruthenium oxide, which enables the stabilization of Ru cations in a low oxidation state and a ruthenium oxycarbonate phase to form. The catalyst shows an activity and selectivity for the conversion of CO2 into methane at lower temperatures than those of conventional catalysts, with an excellent long-term stability. Furthermore, this catalyst is able to operate under intermittent power supply conditions, which couples very well with electricity production systems based on renewable energies. The structure of the catalyst and the nature of the ruthenium species were acutely characterized by combining advanced imaging and spectroscopic tools at the macro and atomic scales, which highlighted the low-oxidation-state Ru sites (Run+, 0 < n < 4) as responsible for the high catalytic activity. This catalyst suggests alternative perspectives for materials design using interstitial dopants.

5.
ACS Catal ; 12(9): 4938-4946, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35557709

ABSTRACT

NH3 production accounts for more than 1% of the total CO2 emissions and is considered one of the most energy-intensive industrial processes currently (T > 400 °C and P > 80 bars). The development of atmospheric-pressure N2 fixation to NH3 under mild conditions is attracting much attention, especially using additional renewable energy sources. Herein, efficient photothermal NH3 evolution in continuous flow upon visible and NIR light irradiation at near 1 Sun power using Cs-decorated strontium titanate-supported Ru nanoparticles is reported. Notably, for the optimal photocatalytic composition, a constant NH3 rate near 3500 µmolNH3 gcatalyst -1 h-1 was achieved for 120 h reactions, being among the highest values reported at atmospheric pressure under 1 Sun irradiation.

6.
ChemSusChem ; 15(13): e202200194, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35362654

ABSTRACT

5-hydroxymethylfurfural (HMF) has been successfully valorized into 3-hydroxymethylcyclopentylamine through a one-pot cascade process in aqueous phase by coupling the hydrogenative ring-rearrangement of HMF into 3-hydroxymethylcyclopentanone (HCPN) with a subsequent reductive amination with ammonia. Mono- (Ni@C, Co@C) and bimetallic (NiCo@C) nanoparticles with different Ni/Co ratios partially covered by a thin carbon layer were prepared and characterized. Results showed that a NiCo catalyst, (molar ratio Ni/Co=1, Ni0.5 Co0.5 @C), displayed excellent performance in the hydrogenative ring-rearrangement of HMF into HCPN (>90 % yield). The high selectivity of the catalyst was attributed to the formation of NiCo alloy structures as hydrogenating sites that limited competitive reactions such as the hydrogenation of furan ring and the over-reduction of the formed HPCN. The subsequent reductive amination of HPCN with aqueous ammonia was performed giving the target cyclopentylaminoalcohol in 97 % yield. Moreover, the catalyst exhibited high stability maintaining its activity and selectivity for repeated reaction cycles.


Subject(s)
Ammonia , Nanoparticles , Catalysis , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Water
7.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055203

ABSTRACT

Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of Al0.25Si0.75O2. We investigated the kinetics of WFR at elevated H2 pressures and various temperatures under interfacial confinement using ambient pressure X-ray photoelectron spectroscopy. The apparent activation energy was lower than that on bare Ru(0001) but higher than that on the BL-silica/Ru(0001). The apparent reaction order with respect to H2 was also determined. The increased residence time of water at the surface, resulting from the presence of the BL-aluminosilicate (and its subsequent electrostatic stabilization), favors the so-called disproportionation reaction pathway (*H2O + *O ↔ 2 *OH), but with a higher energy barrier than for pure BL-silica.

8.
Kidney Int Rep ; 6(9): 2392-2403, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514200

ABSTRACT

INTRODUCTION: The clinical-histologic correlation in diabetic nephropathy is not completely known. METHODS: We analyzed nephrectomy specimens from 90 patients with diabetes and diverse degrees of proteinuria and glomerular filtration rate (GFR). RESULTS: Thirty-six (40%) subjects had normoalbuminuria, 33 (37%) microalbuminuria, and 21 (23%) non-nephrotic proteinuria. Mean estimated GFR (eGFR) was 65±23 (40% <60 ml/min per 1.73 m2). About 170 glomeruli per patient were analyzed, and all samples included vascular tissue. Six subjects (7%) were classified in diabetic nephropathy class I, 61 (68%) in class II-a, 13 (14%) in class II-b, 9 (10%) class III, and 1 (1%) in class IV. Eighty percent to 90% of those with normoalbuminuria or microalbuminuria were classified in class II-a or II-b and <10% in class III; 52% of those with proteinuria were in class II-a, 15% in class II-b, and 19% in class III. Nodular sclerosis (57%) and mesangial expansion (15%) were more frequent in cases with proteinuria than in normoalbuminuria (28% and 8%; P = 0.028 and 0.017). About 20% to 30% of all cases, regardless the level of albuminuria or proteinuria or the histologic class had tubular atrophy, interstitial fibrosis, or inflammation in >10% to 20% of the sample. Moderate hyalinosis and arteriolar sclerosis were observed in 80% to 100% of cases with normoalbuminuria, microalbuminuria, proteinuria, as well as in class I, II, or III. CONCLUSIONS: Weak correspondence between analytical parameters and kidney histology was found. Thus, disease may progress undetected from the early clinical stages of the disease. Finally, vascular damage was a very common finding, which highlights the role of ischemic intrarenal disease in diabetes.

9.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443868

ABSTRACT

In this paper, substituted anilines are industrially obtained by direct hydrogenation of nitroaromatic compounds with molecular H2 using metals as catalysts. Previous theoretical studies proposed that the mechanism of the reaction depends on the nature of the metal used as a catalyst, and that rationally designed bimetallic materials might show improved catalytic performance. Herein, we present IR spectroscopic studies of nitrobenzene interactions with monometallic Ni/SiO2, Cu/SiO2 and Pd/SiO2, and with bimetallic CuNi/SiO2 and CuPd/SiO2 catalysts, both in the absence and presence of H2, combined with density functional theory (DFT) calculations on selected bimetallic NiCu(111) and PdCu(111) models. The results obtained experimentally confirm that the reaction mechanism on non-noble metals such as Ni proceeds through N-O bond dissociation, generating nitrosobenzene intermediates, while, on noble metals, such as Pd, H-attack is necessary to activate the NO bond. Moreover, a bimetallic CuPd/SiO2 catalyst with a Pd enriched surface is prepared that exhibits an enhanced H2 dissociation ability and a particular reactivity at the boundary between the two metals.

10.
ACS Appl Mater Interfaces ; 13(26): 31021-31030, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34176269

ABSTRACT

The structure of UiO-66(Ce) is formed by CeO2-x defective nanoclusters connected by terephthalate ligands. The initial presence of accessible Ce3+ sites in the as-synthesized UiO-66(Ce) has been determined by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR)-CO analyses. Moreover, linear scan voltammetric measurements reveal a reversible Ce4+/Ce3+ interconversion within the UiO-66(Ce) material, while nanocrystalline ceria shows an irreversible voltammetric response. This suggests that terephthalic acid ligands facilitate charge transfer between subnanometric metallic nodes, explaining the higher oxidase-like activity of UiO-66(Ce) compared to nanoceria for the mild oxidation of organic dyes under aerobic conditions. Based on these results, we propose the use of Ce-based metal-organic frameworks (MOFs) as efficient catalysts for the halogenation of activated arenes, as 1,3,5-trimethoxybenzene (TMB), using oxygen as a green oxidant. Kinetic studies demonstrate that UiO-66(Ce) is at least three times more active than nanoceria under the same reaction conditions. In addition, the UiO-66(Ce) catalyst shows an excellent stability and can be reused after proper washing treatments. Finally, a general mechanism for the oxidative halogenation reaction is proposed when using Ce-MOF as a catalyst, which mimics the mechanistic pathway described for metalloenzymes. The superb control in the generation of subnanometric CeO2-x defective clusters connected by adequate organic ligands in MOFs offers exciting opportunities in the design of Ce-based redox catalysts.

11.
ACS Catal ; 11(8): 4784-4798, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33889436

ABSTRACT

Adjusting hydrocarbon product distributions in the Fischer-Tropsch (FT) synthesis is of notable significance in the context of so-called X-to-liquids (XTL) technologies. While cobalt catalysts are selective to long-chain paraffin precursors for synthetic jet- and diesel-fuels, lighter (C10-) alkane condensates are less valuable for fuel production. Alternatively, iron carbide-based catalysts are suitable for the coproduction of paraffinic waxes alongside liquid (and gaseous) olefin chemicals; however, their activity for the water-gas-shift reaction (WGSR) is notoriously detrimental when hydrogen-rich syngas feeds, for example, derived from (unconventional) natural gas, are to be converted. Herein the roles of pore architecture and oxide promoters of Lewis basic character on CoRu/Al2O3 FT catalysts are systematically addressed, targeting the development of catalysts with unusually high selectivity to liquid olefins. Both alkali and lanthanide oxides lead to a decrease in turnover frequency. The latter, particularly PrO x , prove effective to boost the selectivity to liquid (C5-10) olefins without undesired WGSR activity. In situ CO-FTIR spectroscopy suggests a dual promotion via both electronic modification of surface Co sites and the inhibition of Lewis acidity on the support, which has direct implications for double-bond isomerization reactivity and thus the regioisomery of liquid olefin products. Density functional theory calculations ascribe oxide promotion to an enhanced competitive adsorption of molecular CO versus hydrogen and olefins on oxide-decorated cobalt surfaces, dampening (secondary) olefin hydrogenation, and suggest an exacerbated metal surface carbophilicity to underlie the undesired induction of WGSR activity by strongly electron-donating alkali oxide promoters. Enhanced pore molecular transport within a multimodal meso-macroporous architecture in combination with PrO x as promoter, at an optimal surface loading of 1 Prat nm-2, results in an unconventional product distribution, reconciling benefits intrinsic to Co- and Fe-based FT catalysts, respectively. A chain-growth probability of 0.75, and thus >70 C% selectivity to C5+ products, is achieved alongside lighter hydrocarbon (C5-10) condensates that are significantly enriched in added-value chemicals (67 C%), predominantly α-olefins but also linear alcohols, remarkably with essentially no CO2 side-production (<1%). Such unusual product distributions, integrating precursors for synthetic fuels and liquid platform chemicals, might be desired to diversify the scope and improve the economics of small-scale gas- and biomass-to-liquid processes.

12.
Chem Soc Rev ; 50(7): 4564-4605, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33595011

ABSTRACT

Ethene is a commodity chemical of great importance for manufacturing diverse consumer products, whose synthesis via crude oil steam cracking is one of the most energy-intensive processes in the petrochemical industry. Oxidative dehydrogenation (ODH) of ethane is an attractive, low energy, alternative route to ethene which could reduce the carbon footprint for its production, however, the commercial implementation of ODH requires catalysts with improved selectivity. This review critically assesses recent developments in catalytic technologies for ethane ODH, and discusses how insight into proposed mechanisms from computational studies, and CO2 assisted ethane dehydrogenation (CO2-DHE), provide opportunities for economically viable processes to meet growing demands for ethene while reducing carbon emissions. Future trends and emerging technologies for ethane ODH are also discussed.

13.
ACS Catal ; 11(13): 8197-8210, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-35633841

ABSTRACT

Non-noble bimetallic CoW nanoparticles (NPs) partially embedded in a carbon matrix (CoW@C) have been prepared by a facile hydrothermal carbon-coating methodology followed by pyrolysis under an inert atmosphere. The bimetallic NPs, constituted by a multishell core-shell structure with a metallic Co core, a W-enriched shell involving Co7W6 alloyed structures, and small WO3 patches partially covering the surface of these NPs, have been established as excellent catalysts for the selective hydrogenation of quinolines to their corresponding 1,2,3,4-tetrahydroquinolines under mild conditions of pressure and temperature. It has been found that this bimetallic catalyst displays superior catalytic performance toward the formation of the target products than the monometallic Co@C, which can be attributed to the presence of the CoW alloyed structures.

14.
J Phys Chem Lett ; 11(23): 10060-10066, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33179925

ABSTRACT

The dynamic nature of the copper cations acting as active sites for selective catalytic reduction of nitrogen oxides with ammonia is investigated using a combined theoretical and spectroscopic approach. Ab initio molecular dynamics simulations of Cu-CHA catalysts in contact with reactants and intermediates at realistic operating conditions show that only ammonia is able to release Cu+ and Cu2+ cations from their positions coordinated to the zeolite framework, forming mobile Cu+(NH3)2 and Cu2+(NH3)4 complexes that migrate to the center of the cavity. Herein, we give evidence that such mobilization of copper cations modifies the vibrational fingerprint in the 800-1000 cm-1 region of the IR spectra. Bands associated with the lattice asymmetric T-O-T vibrations are perturbed by the presence of coordinated cations, and allow one to experimentally follow the dynamic reorganization of the active sites at operating conditions.

15.
Dalton Trans ; 49(38): 13282-13293, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32936179

ABSTRACT

Materials from the WO3-Nb2O5 system, presenting bronze-type crystal structures, display outstanding functional properties for several applications as thermoelectric materials, lithium-ion battery electrodes, or catalysts. In this work, a series of W-Nb-O oxide bronzes have been synthesized by the hydrothermal method (with Nb/(W + Nb) ratios in the range of 0-1). A combination of bulk and surface characterisation techniques has been applied to get further insights into: (i) the effect of thermal treatments on as-prepared materials and (ii) the surface chemical nature of W-Nb-O oxide bronzes. Thermal treatments promote the following structural changes: (i) loss of emerging long-range order and (ii) the elimination of NH4+ and H2O species from the structural channels of the as-synthesized materials. It has been observed that W-Nb-O bronzes with Nb at% of ca. 50% are able to retain a long-range order after heat-treatments, which is attributed to the presence of a Cs0.5[W2.5Nb2.5O14]-type structure. Increasing amounts of Nb5+ in the materials (i) promote a phase transition to pseudocrystalline phases ordered along the c-axis; (ii) stabilize surface W5+ species (elucidated by XPS); and (iii) increase the proportion of surface Lewis acid sites (as determined by the FTIR of adsorbed CO). Results suggest that pseudocrystalline oxides (with a Nb at% ≥ 50%) are closely related to NbO7 pentagonal bipyramid-containing structures. The stabilisation of Lewis acid sites on these pseudocrystalline materials leads to a higher yield of heavy compounds, at the expense of acrolein formation, in the gas-phase dehydration of glycerol.

16.
J Am Chem Soc ; 142(35): 14890-14902, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786735

ABSTRACT

Understanding and tuning the catalytic properties of metals atomically dispersed on oxides are major stepping-stones toward a rational development of single-atom catalysts (SACs). Beyond individual showcase studies, the design and synthesis of structurally regular series of SACs opens the door to systematic experimental investigations of performance as a function of metal identity. Herein, a series of single-atom catalysts based on various 4d (Ru, Rh, Pd) and 5d (Ir, Pt) transition metals has been synthesized on a common MgO carrier. Complementary experimental (X-ray absorption spectroscopy) and theoretical (Density Functional Theory) studies reveal that, regardless of the metal identity, metal cations occupy preferably octahedral coordination MgO lattice positions under step-edges, hence highly confined by the oxide support. Upon exposure to O2-lean CO oxidation conditions, FTIR spectroscopy indicates the partial deconfinement of the monatomic metal centers driven by CO at precatalysis temperatures, followed by the development of surface carbonate species under steady-state conditions. These findings are supported by DFT calculations, which show the driving force and final structure for the surface metal protrusion to be metal-dependent, but point to an equivalent octahedral-coordinated M4+ carbonate species as the resting state in all cases. Experimentally, apparent reaction activation energies in the range of 96 ± 19 kJ/mol are determined, with Pt leading to the lowest energy barrier. The results indicate that, for monatomic sites in SACs, differences in CO oxidation reactivity enforceable via metal selection are of lower magnitude than those evidenced previously through the mechanistic involvement of adjacent redox centers on the oxide carrier, suggesting that tuning of the oxide surface chemistry is as relevant as the selection of the supported metal.

17.
Angew Chem Int Ed Engl ; 59(36): 15695-15702, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32583951

ABSTRACT

Preparation of supported metal catalysts with uniform particle size and coordination environment is a challenging and important topic in materials chemistry and catalysis. In this work, we report the regioselective generation of single-site Ir atoms and their evolution into stabilized subnanometric Ir clusters in MWW zeolite, which are located at the 10MR window connecting the two neighboring 12MR supercages. The size of the subnanometric Ir clusters can be controlled by the post-synthesis treatments and maintain below 1 nm even after being reduced at 650 °C, which cannot be readily achieved with samples prepared by conventional impregnation methods. The high structure sensitivity, size-dependence, of catalytic performance in the alkane hydrogenolysis reaction of Ir clusters in the subnanometric regime is evidenced.

18.
Angew Chem Int Ed Engl ; 59(14): 5806-5815, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31903674

ABSTRACT

Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1 /CeO2 and Rh1 /CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.

19.
Nano Lett ; 20(1): 426-432, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31833371

ABSTRACT

We first report the systematic control of the reactivity of H2O vapor in metal-organic frameworks (MOFs) with Pt nanocrystals (NCs) through ligand functionalization. We successfully synthesized Pt NCs covered with a water-stable MOF, UiO-66 (Pt@UiO-66), having different metal ions or functionalized ligands. The ligand functionalization of UiO-66 significantly affected the catalytic performance of the water-gas shift reaction, and the replacement of Zr4+ ions with Hf4+ ions in UiO-66 had no impact on the catalytic activity. The introduction of a -Br group lowered the reactivity of Pt@UiO-66 by nearly half, whereas the substitution of -Br with a -Me2 group triply enhanced the activity. The origin of the enhanced catalytic activity was found to be the change in H2O activity in the UiO-66 pores by the ligand functionalization, which was investigated using H2O sorption, solid-state NMR, X-ray photoelectron spectroscopy, and in situ IR measurements. This work opens a new prospect to develop MOFs as a platform to activate H2O.

20.
ACS Catal ; 9(12): 10626-10639, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31840008

ABSTRACT

Identification of active sites in heterogeneous metal catalysts is critical for understanding the reaction mechanism at the molecular level and for designing more efficient catalysts. Because of their structural flexibility, subnanometric metal catalysts, including single atoms and clusters with a few atoms, can exhibit dynamic structural evolution when interacting with substrate molecules, making it difficult to determine the catalytically active sites. In this work, Pt catalysts containing selected types of Pt entities (from single atoms to clusters and nanoparticles) have been prepared, and their evolution has been followed, while they were reacting in a variety of heterogeneous catalytic reactions, including selective hydrogenation reactions, CO oxidation, dehydrogenation of propane, and photocatalytic H2 evolution reaction. By in situ X-ray absorption spectroscopy, in situ IR spectroscopy, and high-resolution electron microscopy techniques, we will show that some characterization techniques carried out in an inadequate way can introduce confusion on the interpretation of coordination environment of highly dispersed Pt species. Finally, the combination of catalytic reactivity and in situ characterization techniques shows that, depending on the catalyst-reactant interaction and metal-support interaction, singly dispersed metal atoms can rapidly evolve into metal clusters or nanoparticles, being the working active sites for those abovementioned heterogeneous reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...