Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2679: 163-180, 2023.
Article in English | MEDLINE | ID: mdl-37300615

ABSTRACT

Cell-free DNA has many applications in clinical medicine, in particular in cancer diagnosis and cancer treatment monitoring. Microfluidic-based solutions could provide solutions for rapid, cheaper, decentralized detection of cell-free tumoral DNA from a simple blood draw, or liquid biopsies, replacing invasive procedures or expensive scans. In this method, we present a simple microfluidic system for the extraction of cell-free DNA from low volume of plasma samples (≤500 µL). The technique is suitable for either static or continuous flow systems and can be used as a stand-alone module or integrated within a lab-on-chip system. The system relies on a simple yet highly versatile bubble-based micromixer module whose custom components can be fabricated with a combination of low-cost rapid prototyping techniques or ordered via widely available 3D-printing services. This system is capable of performing cell-free DNA extractions from small volumes of blood plasma with up to a tenfold increase in capture efficiency when compared to control methods.


Subject(s)
Cell-Free Nucleic Acids , Microfluidics , Microfluidics/methods , Liquid Biopsy , Oligonucleotide Array Sequence Analysis , Lab-On-A-Chip Devices
2.
Lab Chip ; 23(1): 62-71, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36477089

ABSTRACT

For many blood-based diagnostic tests, including prophylactic drug analysis and malaria assays, red blood cells must be lysed effectively prior to their use in an analytical workflow. We report on a finger-actuated blood lysate preparation device, which utilises a previously reported acoustofluidic micromixer module. The integrated device includes a range of innovations from a sample interface, to the integration of blisters on a laser engraved surface and a large volume (130 µL) one-stroke manual pump which could be useful in other low-cost microfluidic-based point-of-care devices. The adaptability of the acoustic mixer is demonstrated on highly viscous fluids, including whole blood, with up to 65% percent volume fraction of red blood cells. Used in conjunction with a lysis buffer, the micromixer unit is also shown to lyse a finger-prick (approximately 20 µL) blood sample in 30 seconds and benchmarked across ten donor samples. Finally, we demonstrate the ease of use of the fully integrated device. Cheap, modular, but reliable, finger-actuated microfluidic functions could open up opportunities for the development of diagnostics with minimal resources.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Fingers , Erythrocytes , Lab-On-A-Chip Devices
3.
PLoS One ; 17(7): e0266769, 2022.
Article in English | MEDLINE | ID: mdl-35802693

ABSTRACT

Blood plasma separation is a prerequisite in numerous biomedical assays involving low abundance plasma-borne biomarkers and thus is the fundamental step before many bioanalytical steps. High-capacity refrigerated centrifuges, which have the advantage of handling large volumes of blood samples, are widely utilized, but they are bulky, non-transportable, and prohibitively expensive for low-resource settings, with prices starting at $1,500. On the other hand, there are low-cost commercial and open-source micro-centrifuges available, but they are incapable of handling typical clinical amounts of blood samples (2-10mL). There is currently no low-cost CE marked centrifuge that can process large volumes of clinical blood samples on the market. As a solution, we customised the rotor of a commercially available low-cost micro-centrifuge (~$125) using 3D printing to enable centrifugation of large clinical blood samples in resource poor-settings. Our custom adaptor ($15) can hold two 9 mL S-Monovette tubes and achieve the same separation performance (yield, cell count, hemolysis, albumin levels) as the control benchtop refrigerated centrifuge, and even outperformed the control in platelet separation by at least four times. This low-cost open-source centrifugation system capable of processing clinical blood tubes could be valuable to low-resource settings where centrifugation is required immediately after blood withdrawal for further testing.


Subject(s)
Plasma , Software , Centrifugation , Printing, Three-Dimensional
4.
Lab Chip ; 21(14): 2825, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34165485

ABSTRACT

Correction for 'Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples' by Alvaro J. Conde et al., Lab Chip, 2020, 20, 741-748, DOI: 10.1039/C9LC01130G.

5.
Lab Chip ; 20(4): 741-748, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31960868

ABSTRACT

Acoustic micromixers have attracted considerable attention in the last years since they can deliver high mixing efficiencies without the need for movable components. However, their adoption in the academic and industrial microfluidics community has been limited, possibly due to the reduced flexibility and accessibility of previous designs since most of them are application-specific and fabricated with techniques that are expensive, not widely available and difficult to integrate with other manufacturing technologies. In this work, we describe a simple, yet highly versatile, bubble-based micromixer module fabricated with a combination of low-cost rapid prototyping techniques. The hybrid approach enables the integration of the module into practically any substrate and the individual control of multiple micromixers embedded within the same monolithic chip. The module can operate under static and continuous flow conditions showing enhanced mixing capabilities compared to similar devices. We show that the system is capable of performing cell-free DNA extractions from small volumes of blood plasma (≤500 µl) with up to a ten-fold increase in capture efficiency when compared to control methods.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Microfluidics , Acoustics , Cell-Free Nucleic Acids/blood , Humans
6.
Lab Chip ; 14(23): 4506-12, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25257193

ABSTRACT

We present a low-cost, portable microfluidic platform that uses laminated polymethylmethacrylate chips, peristaltic micropumps and LEGO® Mindstorms components for the generation of magnetoliposomes that does not require extrusion steps. Mixtures of lipids reconstituted in ethanol and an aqueous phase were injected independently in order to generate a combination of laminar flows in such a way that we could effectively achieve four hydrodynamic focused nanovesicle generation streams. Monodisperse magnetoliposomes with characteristics comparable to those obtained by traditional methods have been obtained. The magnetoliposomes are responsive to external magnetic field gradients, a result that suggests that the nanovesicles can be used in research and applications in nanomedicine.


Subject(s)
Liposomes/chemistry , Magnets/chemistry , Microfluidic Analytical Techniques/methods , Computer Simulation , Equipment Design , Ethanol , Hydrodynamics , Lipids/chemistry , Microfluidic Analytical Techniques/instrumentation , Nanoparticles/chemistry , Nephelometry and Turbidimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...