Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Nat Nanotechnol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750164

ABSTRACT

Owing to their distinct physical and chemical properties, inorganic nanoparticles (NPs) have shown promising results in preclinical cancer therapy, but designing and engineering them for effective therapeutic purposes remains a challenge. Although a comprehensive database of inorganic NP research is not currently available, it is crucial for developing effective cancer therapies. In this context, machine learning (ML) has emerged as a transformative tool, but its adaptation to nanomedicine is hindered by inexistent or small datasets. Here we assembled a large database of inorganic NPs, comprising experimental datasets from 745 preclinical studies in cancer nanomedicine. Using descriptive statistics and explainable ML models we mined this database to gain knowledge of inorganic NP design patterns and inform future NP research for cancer treatment. Our analyses suggest that NP shape and therapy type are prominent features in determining in vivo efficacy, measured as a percentage of tumour reduction. Moreover, our database provides a large-scale open-access resource for discriminative ML that the broader nanotechnology community can utilize. Our work blueprints data mining for translational cancer research and offers evidence for standardizing NP reporting to accelerate and de-risk inorganic NP-based drug delivery, which may help to improve patient outcomes in clinical settings.

2.
Biosensors (Basel) ; 14(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38534230

ABSTRACT

Viticulture and associated products are an important part of the economy in many countries. However, biotic and abiotic stresses impact negatively the production of grapes and wine. Climate change is in many aspects increasing both these stresses. Routine sample retrievals and analysis tend to be time-consuming and require expensive equipment and skilled personnel to operate. These challenges could be overcome through the development of a miniaturized analytic device for early detection of grapevine stresses in the field. Abscisic acid is involved in several plant processes, including the onset of fruit ripening and tolerance mechanisms against drought stress. This hormone can be detected through a competitive immunoassay and is found in plants in concentrations up to 10-1 mg/mL. A microfluidic platform is developed in this work which can detect a minimum of 10-11 mg/mL of abscisic acid in buffer. Grape samples were tested using the microfluidic system alongside benchmark techniques such as high-performance liquid chromatography. The microfluidic system could detect the increase to 10-5 mg/mL of abscisic acid present in real berry samples at the veraison stage of ripening.


Subject(s)
Vitis , Wine , Abscisic Acid , Microfluidics , Immunoassay
3.
Bioconjug Chem ; 35(2): 132-139, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38345213

ABSTRACT

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Infant, Newborn , Albumins/metabolism , Cathepsin B/metabolism , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/metabolism , Neoplasms/drug therapy , Peptide Hydrolases , Tissue Distribution
4.
Article in English | MEDLINE | ID: mdl-38376619

ABSTRACT

Due to the severity and high prevalence of cancer, as well as its complex pathological condition, new strategies for cancer treatment and diagnostics are required. As such, it is important to design a toolbox that integrates multiple functions on a single smart platform. Theranostic hydrogels offer an innovative and personalized method to tackle cancer while also considering patient comfort, thereby facilitating future implementation and translation to the clinic. In terms of theranostic systems used in cancer therapy, nanoparticles are widely used as diagnostic and therapeutic tools. Nanoparticles can achieve systemic circulation, evade host defenses, and deliver drugs and signaling agents at the targeted site, to diagnose and treat the disease at a cellular and molecular level. In this context, hydrogel microneedles have a high potential for multifunctional operation in medical devices, while avoiding the complications associated with the systemic delivery of therapeutics. Compared with oral administration and subcutaneous injection, microneedles offer advantages such as better patient compliance, faster onset of action, and improved permeability and efficacy. In addition, they comprise highly biocompatible polymers with excellent degradability and tunable properties. Nanoparticles and microneedles thus offer the possibility to expand the theranostic potential through combined synergistic use of their respective features. We review herein recent advances concerning processing methods and material requirements within the realm of hydrogel microneedles as theranostic platforms, various approaches toward cancer therapy, and the incorporation of nanoparticles for added functionality.

5.
J Am Chem Soc ; 146(2): 1644-1656, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38174960

ABSTRACT

Photodynamic therapy (PDT), an emergent noninvasive cancer treatment, is largely dependent on the presence of efficient photosensitizers (PSs) and a sufficient oxygen supply. However, the therapeutic efficacy of PSs is greatly compromised by poor solubility, aggregation tendency, and oxygen depletion within solid tumors during PDT in hypoxic microenvironments. Despite the potential of PS-based metal-organic frameworks (MOFs), addressing hypoxia remains challenging. Boron dipyrromethene (BODIPY) chromophores, with excellent photostability, have exhibited great potential in PDT and bioimaging. However, their practical application suffers from limited chemical stability under harsh MOF synthesis conditions. Herein, we report the synthesis of the first example of a Zr-based MOF, namely, 69-L2, exclusively constructed from the BODIPY-derived ligands via a single-crystal to single-crystal post-synthetic exchange, where a direct solvothermal method is not applicable. To increase the PDT performance in hypoxia, we modify 69-L2 with fluorinated phosphate-functionalized methoxy poly(ethylene glycol). The resulting 69-L2@F is an oxygen carrier, enabling tumor oxygenation and simultaneously acting as a PS for reactive oxygen species (ROS) generation under LED irradiation. We demonstrate that 69-L2@F has an enhanced PDT effect in triple-negative breast cancer MDA-MB-231 cells under both normoxia and hypoxia. Following positive results, we evaluated the in vivo activity of 69-L2@F with a hydrogel, enabling local therapy in a triple-negative breast cancer mice model and achieving exceptional antitumor efficacy in only 2 days. We envision BODIPY-based Zr-MOFs to provide a solution for hypoxia relief and maximize efficacy during in vivo PDT, offering new insights into the design of promising MOF-based PSs for hypoxic tumors.


Subject(s)
Boron Compounds , Metal-Organic Frameworks , Neoplasms , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Metal-Organic Frameworks/chemistry , Photochemotherapy/methods , Zirconium/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Oxygen , Neoplasms/therapy , Hypoxia , Cell Line, Tumor , Tumor Microenvironment
6.
J Control Release ; 367: 300-315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281670

ABSTRACT

Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (∼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Phototherapy/methods , Biomimetics , Gold , Reproducibility of Results , Cell Line, Tumor , Neoplasms/therapy , Theranostic Nanomedicine/methods
7.
Trends Biotechnol ; 42(1): 10-13, 2024 01.
Article in English | MEDLINE | ID: mdl-37516612

ABSTRACT

CRISPR biosensors enable rapid and accurate detection of nucleic acids without resorting to target amplification. Specifically, these systems facilitate the simultaneous detection of multiple nucleic acid targets with single-base specificity. This is an invaluable asset that can ultimately facilitate accurate diagnoses of biologically complex diseases.


Subject(s)
Biosensing Techniques , Nucleic Acids , Clustered Regularly Interspaced Short Palindromic Repeats , Nucleic Acids/genetics , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques
8.
Cell Rep Phys Sci ; 4(11): 101648, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38021344

ABSTRACT

Bioinspired cell-membrane-camouflaged nanohybrids have been proposed to enhance tumor targeting by harnessing their immune escape and self-recognition abilities. In this study, we introduce cancer-cell-derived membrane nanovesicles (CCMVs) integrated with gold nanorods (AuVNRs) in addition to therapeutic and imaging cargos such as doxorubicin and indocyanine green. This approach enhances targeted tumor imaging and enables synergistic chemo-phototherapeutics for solid tumors. CCMVs demonstrate significant tumor penetration and retention, serving as nanotheranostics with accessible surface biomarkers, biomimicking properties, and homologous targeting abilities. By evading uptake by the mononuclear phagocytic system, CCMVs can diffuse into the deep tumor core, leading to precise tumor reduction while preserving the surrounding healthy tissues. Notably, intravenous administration of these theranostic agents ensures biocompatibility, as evidenced by a survival period of approximately two months (up to 63 days) without any observed side effects. Our findings underscore the diagnostic and therapeutic potential of this biomimetic nanotheranostics platform.

9.
ACS Omega ; 8(41): 37654-37684, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867666

ABSTRACT

Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.

10.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893274

ABSTRACT

Microfluidics evolved with the appearance of polydimethylsiloxane (PDMS), an elastomer with a short processing time and the possibility for replication on a micrometric scale. Despite the many advantages of PDMS, there are well-known drawbacks, such as the hydrophobic surface, the absorption of small molecules, the low stiffness, relatively high cost, and the difficulty of scaling up the fabrication process for industrial production, creating a need for alternative materials. One option is the use of stiffer thermoplastics, such as the cyclic olefin copolymer (COC), which can be mass produced, have lower cost and possess excellent properties. In this work, a method to fabricate COC microfluidic structures was developed. The work was divided into process optimization and evaluation of material properties for application in microfluidics. In the processing step, moulding, sealing, and liquid handling aspects were developed and optimized. The resulting COC devices were evaluated from the point of view of molecular diffusion, burst pressure, temperature resistance, and susceptibility to surface treatments and these results were compared to PDMS devices. Lastly, a target DNA hybridization assay was performed showing the potential of the COC-based microfluidic device to be used in biosensing and Lab-on-a-Chip applications.

11.
Chem Soc Rev ; 52(21): 7579-7601, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37817741

ABSTRACT

Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.


Subject(s)
Nanoparticles , Nanoparticles/therapeutic use , Drug Delivery Systems , Nanotechnology , Pharmaceutical Preparations , RNA
12.
Cancers (Basel) ; 15(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37509409

ABSTRACT

mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.

13.
ACS Biomater Sci Eng ; 9(8): 4527-4557, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37450683

ABSTRACT

Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/therapeutic use , Precision Medicine , Reproducibility of Results , Tissue Distribution , Neoplasms/therapy , Neoplasms/drug therapy , Phospholipids/therapeutic use
14.
Mater Today Bio ; 20: 100671, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37273792

ABSTRACT

Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.

15.
Mil Med Res ; 10(1): 19, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37101293

ABSTRACT

A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.


Subject(s)
Exosomes , Neurodegenerative Diseases , Humans , Tissue Engineering , Regenerative Medicine , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Cell Membrane/chemistry , Exosomes/metabolism
16.
Biosensors (Basel) ; 13(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36979546

ABSTRACT

Prostate cancer (PCa) is one of the cancer types that most affects males worldwide and is among the highest contributors to cancer mortality rates. Therefore, there is an urgent need to find strategies to improve the diagnosis of PCa. Microtechnologies have been gaining ground in biomedical devices, with microfluidics and lab-on-chip systems potentially revolutionizing medical diagnostics. In this paper, it is shown that prostate-specific antigen (PSA) can be detected through an immunoassay performed in a microbead-based microfluidic device after being extracted and purified from a serum sample through an aqueous biphasic system (ABS). Given their well-established status as ABS components for successful bioseparations, ionic liquids (ILs) and polymers were used in combination with buffered salts. Using both IL-based and polymer-based ABS, it was demonstrated that it is possible to detect PSA in non-physiological environments. It was concluded that the ABS that performed better in extracting the PSA from serum were those composed of tetrabutylammonium chloride ([N4444]Cl) and tetrabutylphosphonium bromide ([P4444]Br), both combined with phosphate buffer, and constituted by polyethylene glycol with a molecular weight of 1000 g/mol (PEG1000) with citrate buffer. In comparison with the assay with PSA prepared in phosphate-buffered saline (PBS) or human serum in which no ABS-mediated extraction was applied, assays attained lower limits of detection after IL-based ABS-mediated extraction. These results reinforce the potential of this method in future point-of-care (PoC) measurements.


Subject(s)
Ionic Liquids , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Water , Prostatic Neoplasms/diagnosis , Polymers , Phosphates
18.
Nat Mater ; 22(7): 818-831, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36941391

ABSTRACT

RNA-based therapeutics have shown tremendous promise in disease intervention at the genetic level, and some have been approved for clinical use, including the recent COVID-19 messenger RNA vaccines. The clinical success of RNA therapy is largely dependent on the use of chemical modification, ligand conjugation or non-viral nanoparticles to improve RNA stability and facilitate intracellular delivery. Unlike molecular-level or nanoscale approaches, macroscopic hydrogels are soft, water-swollen three-dimensional structures that possess remarkable features such as biodegradability, tunable physiochemical properties and injectability, and recently they have attracted enormous attention for use in RNA therapy. Specifically, hydrogels can be engineered to exert precise spatiotemporal control over the release of RNA therapeutics, potentially minimizing systemic toxicity and enhancing in vivo efficacy. This Review provides a comprehensive overview of hydrogel loading of RNAs and hydrogel design for controlled release, highlights their biomedical applications and offers our perspectives on the opportunities and challenges in this exciting field of RNA delivery.


Subject(s)
COVID-19 , Hydrogels , Humans , Hydrogels/chemistry , RNA , COVID-19/therapy , Drug Delivery Systems
19.
Adv Sci (Weinh) ; 10(12): e2207603, 2023 04.
Article in English | MEDLINE | ID: mdl-36782094

ABSTRACT

The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.


Subject(s)
Prostheses and Implants , Biopolymers
20.
Lab Chip ; 23(3): 495-510, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36620939

ABSTRACT

The lack of biomimetic in vitro models capable of reproducing the complex architecture and the dynamic environment of the gastric mucosa, delay the development of diagnostic and therapeutic tools. Recent advances in microengineering made possible the fabrication of bioinspired microdevices capable of replicating the physiological properties of an organ, inside a microfluidics chip. Herein, a bioinspired stomach-on-a-chip (SoC) device is described, supporting peristalsis-like motion and reconstituting organ-level epithelial architecture and function. The device simulates the upper epithelial interface, representing the three innermost layers of the gastric mucosa, namely the epithelial barrier, the basement membrane and the lamina propria. The dynamic environment imparted by mechanical actuation of the flexible on-chip cell culture substrate, was the main driver in the development of epithelial polarization and differentiation traits characteristic of the native gastric mucosa, and allowed partial recapitulation of gastric barrier function. These traits were not affected by the addition of a mesenchymal population to the system, which was able to remodel the surrounding extracellular matrix, nor by the potential epithelial-mesenchymal cross-talk. The engineered platform highlights the importance of addressing the mechanical microenvironment of the native organ, to potentiate an organ-level response of the artificial tissue. The proposed SoC represents an appealing tool in personalized medicine, with bio-relevance for the study of gastric diseases and an alternative to current animal models.


Subject(s)
Cell Culture Techniques , Extracellular Matrix , Animals , Humans , Extracellular Matrix/chemistry , Microfluidics , Stomach , Lab-On-A-Chip Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...