Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 16914, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780676

ABSTRACT

The melting of tropical glaciers provides water resources to millions of people, involving social, ecological and economic demands. At present, these water reservoirs are threatened by the accelerating rates of mass loss associated with modern climate changes related to greenhouse gas emissions and ultimately land use/cover change. Until now, the effects of land use/cover change on the tropical Andean glaciers of South America through biomass burning activities have not been investigated. In this study, we quantitatively examine the hypothesis that regional land use/cover change is a contributor to the observed glacier mass loss, taking into account the role of Amazonian biomass burning. We demonstrated here, for the first time, that for tropical Andean glaciers, a massive contribution of black carbon emitted from biomass burning in the Amazon Basin does exist. This is favorable due to its positioning with respect to Amazon Basin fire hot spots and the predominant wind direction during the transition from the dry to wet seasons (Aug-Sep-Oct), when most fire events occur. We investigated changes in Bolivian Zongo Glacier albedo due to impurities on snow, including black carbon surface deposition and its potential for increasing annual glacier melting. We showed that the magnitude of the impact of Amazonian biomass burning depends on the dust content in snow. When high concentration of dust is present (e.g. 100 ppm of dust), the dust absorbs most of the radiation that otherwise would be absorbed by the BC. Our estimations point to a melting factor of 3.3 ± 0.8% for black carbon, and 5.0 ± 1.0% for black carbon in the presence of low dust content (e.g. 10 ppm of dust). For the 2010 hydrological year, we reported an increase in runoff corresponding to 4.5% of the annual discharge during the seasonal peak fire season, which is consistent with our predictions.

2.
Sci Adv ; 4(8): eaar2514, 2018 08.
Article in English | MEDLINE | ID: mdl-30167458

ABSTRACT

Heinrich events are characterized by worldwide climate modifications. Over the Altiplano endorheic basin (high tropical Andes), the second half of Heinrich Stadial 1 (HS1a) was coeval with the highstand of the giant paleolake Tauca. However, the atmospheric mechanisms underlying this wet event are still unknown at the regional to global scale. We use cosmic-ray exposure ages of glacial landforms to reconstruct the spatial variability in the equilibrium line altitude of the HS1a Altiplano glaciers. By combining glacier and lake modeling, we reconstruct a precipitation map for the HS1a period. Our results show that paleoprecipitation mainly increased along the Eastern Cordillera, whereas the southwestern region of the basin remained relatively dry. This pattern indicates a southward expansion of the easterlies, which is interpreted as being a consequence of a southward shift of the Bolivian High. The results provide a new understanding of atmospheric teleconnections during HS1 and of rainfall redistribution in a changing climate.

3.
Sci Rep ; 7(1): 11947, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947821

ABSTRACT

Climate change is considered as one of the main factors controlling sediment fluxes in mountain belts. However, the effect of El Niño, which represents the primary cause of inter-annual climate variability in the South Pacific, on river erosion and sediment transport in the Western Andes remains unclear. Using an unpublished dataset of Suspended Sediment Yield (SSY) in Peru (1968-2012), we show that the annual SSY increases by 3-60 times during Extreme El Niño Events (EENE) compared to normal years. During EENE, 82% to 97% of the annual SSY occurs from January to April. We explain this effect by a sharp increase in river water discharge due to high precipitation rates and transport capacity during EENE. Indeed, sediments accumulate in the mountain and piedmont areas during dry normal years, and are then rapidly mobilized during EENE years. The effect of EENE on SSY depends on the topography, as it is maximum for catchments located in the North of Peru (3-7°S), exhibiting a concave up hypsometric curve, and minimum for catchments in the South (7-18°S), with a concave down hypsometric curve. These findings highlight how the sediment transport of different topographies can respond in very different ways to large climate variability.

SELECTION OF CITATIONS
SEARCH DETAIL
...