Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Death Differ ; 24(3): 481-491, 2017 03.
Article in English | MEDLINE | ID: mdl-28106882

ABSTRACT

Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-γ (IFNγ) synergises with SMs to kill cancer cells independently of TNF- and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9 HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNγ/SM-induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were resistant to IFNγ/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNγ/SM-induced cell death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as chemotherapeutic agents.


Subject(s)
Apoptosis/drug effects , Caspase 10/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Interferon-gamma/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , CRISPR-Cas Systems/genetics , Caspase 10/chemistry , Caspase 10/genetics , Caspase 8/chemistry , Caspase 8/genetics , Caspase 8/metabolism , Caspase Inhibitors/pharmacology , Cell Line , Cytokine TWEAK/pharmacology , Drug Synergism , HT29 Cells , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mice , Mice, Knockout , Pentanoic Acids/pharmacology , Protein Kinases/deficiency , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
4.
Sci Transl Med ; 8(339): 339ra69, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194727

ABSTRACT

Resistance to chemotherapy is a major problem in cancer treatment, and it is frequently associated with failure of tumor cells to undergo apoptosis. Birinapant, a clinical SMAC mimetic, had been designed to mimic the interaction between inhibitor of apoptosis proteins (IAPs) and SMAC/Diablo, thereby relieving IAP-mediated caspase inhibition and promoting apoptosis of cancer cells. We show that acute myeloid leukemia (AML) cells are sensitive to birinapant-induced death and that the clinical caspase inhibitor emricasan/IDN-6556 augments, rather than prevents, killing by birinapant. Deletion of caspase-8 sensitized AML to birinapant, whereas combined loss of caspase-8 and the necroptosis effector MLKL (mixed lineage kinase domain-like) prevented birinapant/IDN-6556-induced death, showing that inhibition of caspase-8 sensitizes AML cells to birinapant-induced necroptosis. However, loss of MLKL alone did not prevent a caspase-dependent birinapant/IDN-6556-induced death, implying that AML will be less likely to acquire resistance to this drug combination. A therapeutic breakthrough in AML has eluded researchers for decades. Demonstrated antileukemic efficacy and safety of the birinapant/emricasan combination in vivo suggest that induction of necroptosis warrants clinical investigation as a therapeutic opportunity in AML.


Subject(s)
Caspase 8/metabolism , Caspase Inhibitors/pharmacology , Dipeptides/pharmacology , Indoles/pharmacology , Pentanoic Acids/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/metabolism , Necrosis/metabolism , Tumor Cells, Cultured
5.
ACS Med Chem Lett ; 7(3): 318-23, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985322

ABSTRACT

Birinapant/TL32711 (1) is a bivalent antagonist of the inhibitor of apoptosis (IAP) family of proteins and was designed to mimic AVPI, the N-terminal tetrapeptide of the second mitochondria-derived activator of caspases (Smac/DIABLO). Birinapant bound to the BIR3 domains of cIAP1, cIAP2, and XIAP with K i values of 1, 36, and 45 nM, respectively. Birinapant-mediated activation of cIAP1 resulted in cIAP1 autoubiquitylation and degradation and correlated with inhibition of TNF-mediated NF-κB activation, induction of tumor cell death in vitro, and tumor regression in vivo. Birinapant is being evaluated in Phase 1/2 trials for the treatment of cancer and hepatitis B virus (HBV) infection. After one year at accelerated storage conditions, a formulation of 1 afforded four degradants in >0.1% abundance by HPLC analysis. The primary degradants (2 and 3) were formed via oxidation of the biindole core, while the secondary degradants (5 and 6) arose via [1,2]-rearrangement of 3 and 2, respectively. Forced degradation conditions were developed, which allowed the isolation of 2 and 3 in multigram quantities. Novel deuterated analogues of 1 were prepared to determine the site of oxidation, and NMR experiments confirmed the chemical structures of 5 and 6. The de novo synthesis of 2, 3, 5, and 6 confirmed these experimental findings.

6.
Cancer Cell ; 29(2): 145-58, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26859455

ABSTRACT

Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.


Subject(s)
Antineoplastic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/physiology , Leukemia/drug therapy , Mitochondrial Proteins/physiology , Molecular Mimicry , Protein Serine-Threonine Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins , Humans , Mice , Tumor Necrosis Factor-alpha/biosynthesis
7.
Nat Commun ; 6: 6282, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25693118

ABSTRACT

RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3 and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate caspase-8, promoting apoptosis and NLRP3-caspase-1 activation, independent of RIPK3 kinase activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can promote NLRP3 inflammasome and IL-1ß inflammatory responses independent of MLKL and necroptotic cell death.


Subject(s)
Bone Marrow Cells/cytology , Carrier Proteins/metabolism , Inflammasomes/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Autoantibodies/chemistry , Caspase 8/metabolism , Enzyme Activation , Female , Inflammation , Inhibitor of Apoptosis Proteins/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/chemistry , Liver/embryology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Necrosis , Tumor Necrosis Factor-alpha/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
8.
J Med Chem ; 57(9): 3666-77, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24684347

ABSTRACT

Birinapant (1) is a second-generation bivalent antagonist of IAP proteins that is currently undergoing clinical development for the treatment of cancer. Using a range of assays that evaluated cIAP1 stability and oligomeric state, we demonstrated that 1 stabilized the cIAP1-BUCR (BIR3-UBA-CARD-RING) dimer and promoted autoubiquitylation of cIAP1 in vitro. Smac-mimetic 1-induced loss of cIAPs correlated with inhibition of TNF-mediated NF-κB activation, caspase activation, and tumor cell killing. Many first-generation Smac-mimetics such as compound A (2) were poorly tolerated. Notably, animals that lack functional cIAP1, cIAP2, and XIAP are not viable, and 2 mimicked features of triple IAP knockout cells in vitro. The improved tolerability of 1 was associated with (i) decreased potency against cIAP2 and affinity for XIAP BIR3 and (ii) decreased ability to inhibit XIAP-dependent signaling pathways. The P2' position of 1 was critical to this differential activity, and this improved tolerability has allowed 1 to proceed into clinical studies.


Subject(s)
Antineoplastic Agents/pharmacology , Carrier Proteins/chemistry , Dipeptides/pharmacology , Hematologic Neoplasms/drug therapy , Indoles/pharmacology , Mitochondrial Proteins/chemistry , Molecular Mimicry , Neoplasms, Experimental/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Apoptosis Regulatory Proteins , Dipeptides/therapeutic use , Drug Discovery , Indoles/therapeutic use , Mice , Models, Molecular
9.
Mol Cancer Ther ; 13(4): 867-79, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24563541

ABSTRACT

The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide (AVPI) of SMAC to selected BIR domains of the IAPs. Small molecule compounds that mimic the AVPI motif of SMAC have been designed to overcome IAP-mediated apoptosis resistance of cancer cells. Here, we report the preclinical characterization of birinapant (TL32711), a bivalent SMAC-mimetic compound currently in clinical trials for the treatment of cancer. Birinapant bound to the BIR3 domains of cIAP1, cIAP2, XIAP, and the BIR domain of ML-IAP in vitro and induced the autoubiquitylation and proteasomal degradation of cIAP1 and cIAP2 in intact cells, which resulted in formation of a RIPK1:caspase-8 complex, caspase-8 activation, and induction of tumor cell death. Birinapant preferentially targeted the TRAF2-associated cIAP1 and cIAP2 with subsequent inhibition of TNF-induced NF-κB activation. The activity of a variety of chemotherapeutic cancer drugs was potentiated by birinapant both in a TNF-dependent or TNF-independent manner. Tumor growth in multiple primary patient-derived xenotransplant models was inhibited by birinapant at well-tolerated doses. These results support the therapeutic combination of birinapant with multiple chemotherapies, in particular, those therapies that can induce TNF secretion.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Dipeptides/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Indoles/pharmacology , Animals , Breast Neoplasms/pathology , Caspase 8/metabolism , Cell Line, Tumor , Drug Synergism , Female , Humans , Inhibitor of Apoptosis Proteins/metabolism , Mice, Nude , Mitochondrial Proteins/metabolism , Receptors, Tumor Necrosis Factor , Signal Transduction/drug effects , TNF Receptor-Associated Factor 2/metabolism
10.
Biochem J ; 450(3): 629-38, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23259674

ABSTRACT

RING domains of E3 ligases promote transfer of Ub (ubiquitin) from the E2~Ub conjugate to target proteins. In many cases interaction of the E2~Ub conjugate with the RING domain requires its prior dimerization. Using cross-linking experiments we show that E2 conjugated ubiquitin contacts the RING homodimer interface of the IAP (inhibitor of apoptosis) proteins, XIAP (X-linked IAP) and cIAP (cellular IAP) 2. Structural and biochemical analysis of the XIAP RING dimer shows that an aromatic residue at the dimer interface is required for E2~Ub binding and Ub transfer. Mutation of the aromatic residue abolishes Ub transfer, but not interaction with Ub. This indicates that nuleophilic attack on the thioester bond depends on precise contacts between Ub and the RING domain. RING dimerization is a critical activating step for the cIAP proteins; however, our analysis shows that the RING domain of XIAP forms a stable dimer and its E3 ligase activity does not require an activation step.


Subject(s)
Ubiquitin/metabolism , Ubiquitination , X-Linked Inhibitor of Apoptosis Protein/physiology , Amino Acid Sequence , Humans , Models, Biological , Models, Molecular , Phenylalanine/genetics , Phenylalanine/physiology , Protein Binding/genetics , Protein Binding/physiology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/physiology , Protein Multimerization/genetics , Protein Multimerization/physiology , Substrate Specificity , Ubiquitin/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination/genetics , Ubiquitination/physiology , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
12.
J Biol Chem ; 286(19): 17015-28, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21393245

ABSTRACT

The inhibitor of apoptosis (IAP) proteins are important ubiquitin E3 ligases that regulate cell survival and oncogenesis. The cIAP1 and cIAP2 paralogs bear three N-terminal baculoviral IAP repeat (BIR) domains and a C-terminal E3 ligase RING domain. IAP antagonist compounds, also known as Smac mimetics, bind the BIR domains of IAPs and trigger rapid RING-dependent autoubiquitylation, but the mechanism is unknown. We show that RING dimerization is essential for the E3 ligase activity of cIAP1 and cIAP2 because monomeric RING mutants could not interact with the ubiquitin-charged E2 enzyme and were resistant to Smac mimetic-induced autoubiquitylation. Unexpectedly, the BIR domains inhibited cIAP1 RING dimerization, and cIAP1 existed predominantly as an inactive monomer. However, addition of either mono- or bivalent Smac mimetics relieved this inhibition, thereby allowing dimer formation and promoting E3 ligase activation. In contrast, the cIAP2 dimer was more stable, had higher intrinsic E3 ligase activity, and was not highly activated by Smac mimetics. These results explain how Smac mimetics promote rapid destruction of cIAP1 and suggest mechanisms for activating cIAP1 in other pathways.


Subject(s)
Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Biomimetics , Circular Dichroism , Dimerization , Enzyme Activation , Humans , Lentivirus/genetics , Mice , Mutagenesis , Protein Binding , Protein Structure, Tertiary , Scattering, Radiation , Signal Transduction , Ubiquitin/chemistry
13.
Apoptosis ; 16(1): 13-26, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20734142

ABSTRACT

Urothelial carcinoma of the bladder accounts for approximately 5% of all cancer deaths in humans. The large majority of bladder tumors are non-muscle invasive at diagnosis, but even after local surgical therapy there is a high rate of local tumor recurrence and progression. Current treatments extend time to recurrence but do not significantly alter disease survival. The objective of the present study was to investigate the tumoricidal potential of combining the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) with a small molecule inhibitor of apoptosis proteins (IAP) antagonist to interfere with intracellular regulators of apoptosis in human bladder tumor cells. Our results demonstrate that the IAP antagonist Compound A exhibits high binding affinity to the XIAP BIR3 domain. When Compound A was used at nontoxic concentrations in combination with TRAIL, there was a significant increase in the sensitivity of TRAIL-sensitive and TRAIL-resistant bladder tumor lines to TRAIL-mediated apoptosis. In addition, modulation of TRAIL sensitivity in the TRAIL-resistant bladder tumor cell line T24 with Compound A was reciprocated by XIAP small interfering RNA-mediated suppression of XIAP expression, suggesting the importance of XIAP-mediated resistance to TRAIL in these cells. These results suggest the potential of combining Compound A with TRAIL as an alternative therapy for bladder cancer.


Subject(s)
Apoptosis/drug effects , Gene Expression/drug effects , Intracellular Signaling Peptides and Proteins/pharmacology , Mitochondrial Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins , Caspases/metabolism , Drug Synergism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Cells, Cultured , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
16.
J Cell Biol ; 182(1): 171-84, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18606850

ABSTRACT

Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.


Subject(s)
Inhibitor of Apoptosis Proteins/metabolism , Lysosomes/metabolism , Protein Processing, Post-Translational/drug effects , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , Caspase Inhibitors , Cathepsins/metabolism , Cell Death/drug effects , Cell Line, Transformed , Cell Line, Tumor , Humans , Inhibitor of Apoptosis Proteins/chemistry , Lysosomes/drug effects , Mice , Models, Biological , NF-kappa B/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , TWEAK Receptor
17.
Cell ; 131(4): 682-93, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18022363

ABSTRACT

XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.


Subject(s)
Apoptosis/physiology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis Regulatory Proteins , Autocrine Communication , Benzoquinones/metabolism , Brefeldin A/metabolism , Caspase 8/metabolism , Caspase Inhibitors , Cell Line , Enzyme Inhibitors/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lactams, Macrocyclic/metabolism , Mice , Mitochondrial Proteins/metabolism , Molecular Mimicry , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Synthesis Inhibitors/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Serpins/metabolism , Signal Transduction/physiology , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Viral Proteins/metabolism
18.
Bioorg Med Chem Lett ; 16(13): 3504-9, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16644217

ABSTRACT

Several potent, cell permeable 4-aryl-dihydropyrimidinones have been identified as inhibitors of FATP4. Lipophilic ester substituents at the 5-position and substitution at the para-position (optimal groups being -NO(2) and CF(3)) of the 4-aryl group led to active compounds. In two cases racemates were resolved and the S enantiomers shown to have higher potencies.


Subject(s)
Fatty Acid Transport Proteins/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Cell Line , Humans , Molecular Structure , Pyrimidinones/chemical synthesis , Stereoisomerism , Structure-Activity Relationship
20.
Bioorg Med Chem ; 10(3): 731-6, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11814862

ABSTRACT

A series of conformationally-restricted analogues of hPTH was prepared, based on the parent peptide agonist, cyclo(Lys(18)-Asp(22))[Ala(1),Nle(8),Lys(18),Asp(22),Leu(27)]hPTH(1-31)NH(2) (2, EC(50)=0.29nM). Truncation of 2 at either the N- or C-termini resulted in peptides with reduced agonist activity as measured by stimulation of adenylate cyclase activity in the rat osteosarcoma cell line (ROS 17/2.8). Alanine- and glycine-scanning at the N-terminus of 2 was consistent with data previously obtained on linear hPTH(1-34). Other locations within the primary sequence of hPTH(1-31)NH(2) were evaluated by the placement of the [i, i+4] lactam constraining element. Ring size and lactam orientations at the 18-22 positions were also examined.


Subject(s)
Parathyroid Hormone/chemistry , Peptide Fragments/chemistry , Adenylyl Cyclases/drug effects , Amino Acid Sequence , Animals , Humans , Lactams/chemistry , Molecular Sequence Data , Parathyroid Hormone/genetics , Parathyroid Hormone/pharmacology , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Protein Binding , Protein Conformation , Protein Engineering , Rats , Receptors, Parathyroid Hormone/agonists , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...