Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS Negl Trop Dis ; 11(1): e0005258, 2017 01.
Article in English | MEDLINE | ID: mdl-28081126

ABSTRACT

Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high throughput capability and its simplicity of use, which can be quickly adapted in a laboratory to enhance the capacity of rabies molecular diagnostics. The LN34 assay provides an alternative approach for rabies diagnostics, especially in rural areas and rabies endemic regions that lack the conditions and broad experience required to run the standard DFA assay.


Subject(s)
Lyssavirus/isolation & purification , Rabies virus/isolation & purification , Rabies/veterinary , Rabies/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology , Animals , Humans , Lyssavirus/genetics , Rabies/diagnosis , Rabies virus/genetics , Rhabdoviridae Infections/diagnosis , Sensitivity and Specificity
2.
Proc Natl Acad Sci U S A ; 113(39): 10926-31, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621441

ABSTRACT

Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared completely isolated. In contrast, greater population connectivity in biparentally inherited nuclear microsatellites explained the historical limits of invasions, suggesting that dispersing male bats spread VBRV between genetically isolated female populations. Host nuclear DNA further indicated unanticipated gene flow through the Andes mountains connecting the VBRV-free Pacific coast to the VBRV-endemic Amazon rainforest. By combining Bayesian phylogeography with landscape resistance models, we projected invasion routes through northern Peru that were validated by real-time livestock rabies mortality data. The first outbreaks of VBRV on the Pacific coast of South America could occur by June 2020, which would have serious implications for agriculture, wildlife conservation, and human health. Our results show that combining host and pathogen genetic data can identify sex biases in pathogen spatial spread, which may be a widespread but underappreciated phenomenon, and demonstrate that genetic forecasting can aid preparedness for impending viral invasions.


Subject(s)
Biological Evolution , Chiroptera/virology , Host-Pathogen Interactions , Rabies/epidemiology , Animals , Bayes Theorem , Genome, Viral , Geography , Inheritance Patterns/genetics , Male , Microsatellite Repeats/genetics , Peru/epidemiology , Rabies virus/genetics , Seasons
3.
Emerg Infect Dis ; 19(9): 1463-69, 2013.
Article in English | MEDLINE | ID: mdl-23969087

ABSTRACT

During the past decade, incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans. To better understand the epizootiology of rabies associated with vampire bats, we used complete sequences of the nucleoprotein gene to infer phylogenetic relationships among 157 RABV isolates collected from humans, domestic animals, and wildlife, including bats, in Peru during 2002-2007. This analysis revealed distinct geographic structuring that indicates that RABVs spread gradually and involve different vampire bat subpopulations with different transmission cycles. Three putative new RABV lineages were found in 3 non-vampire bat species that may represent new virus reservoirs. Detection of novel RABV variants and accurate identification of reservoir hosts are critically important for the prevention and control of potential virus transmission, especially to humans.


Subject(s)
Chiroptera/virology , Rabies virus/genetics , Rabies/epidemiology , Rabies/transmission , Animals , Evolution, Molecular , Humans , Nucleocapsid Proteins/genetics , Peru/epidemiology , Phylogeny , Rabies virus/classification , Rabies virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...