Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 330, 2019.
Article in English | MEDLINE | ID: mdl-30936890

ABSTRACT

In high-elevation grasslands, plants can encounter periods with high air temperature while the soil remains cold, which may lead to a temporary mismatch in the physiological activity of leaves and roots. In a climate chamber experiment with graminoid species from three elevations (4400, 2400, and 250 m a.s.l.), we tested the hypothesis that soil temperature can influence photosynthesis and stomatal conductance independently of air temperature. Soil monoliths with swards of Kobresia pygmaea (high alpine), Nardus stricta (lower alpine), and Deschampsia flexuosa (upper lowland) were exposed to soil temperatures of 25, 15, 5, and -2°C and air temperatures of 20 and 10°C for examining the effect of independent soil and air temperature variation on photosynthesis, leaf dark respiration, and stomatal conductance and transpiration. Soil frost (-2°C) had a strong negative effect on gas exchange and stomatal conductance in all three species, independent of the elevation of origin. Leaf dark respiration was stimulated by soil frost in D. flexuosa, but not in K. pygmaea, which also had a lower temperature optimum of photosynthesis. Soil cooling from 15 to 5°C did not significantly reduce stomatal conductance and gas exchange in any of the species. We conclude that all three graminoids are able to maintain a relatively high root water uptake in cold, non-frozen soil, but the high-alpine K. pygmaea seems to be especially well adapted to warm shoot - cold root episodes, as it has a higher photosynthetic activity at 10 than 20°C air temperature and does not up-regulate leaf dark respiration upon soil freezing, as was observed in the grasses from warmer climates.

2.
Sci Total Environ ; 648: 754-771, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30134213

ABSTRACT

With 450,000 km2Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

3.
Oecologia ; 188(2): 607-622, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30051213

ABSTRACT

Salt marsh plants are affected by regular tidal inundation exposing them to saline water as a potential water source. This study aimed at quantifying the water uptake of plants depending on their distance from the sea and exploring plant responses to changing inundation regimes. We used stable isotope ratios (δ18O) to determine the proportions of seawater and precipitation water used by three salt marsh species (Spartina anglica, Atriplex portulacoides and Elytrigia atherica) from a German North Sea coast salt marsh. Additionally, A. portulacoides was transplanted to experimental islands at three elevation levels to investigate its plasticity in water use in the course of future sea level rise. We found a marked gradient in plant seawater use from the lowermost pioneer zone (79-98% seawater uptake by S. anglica) to the lower marsh (61-95% by A. portulacoides) and the upper marsh (25-39% by E. atherica). Seasonal differences in water use were not pronounced, likely due to the absence of longer dry periods during summer in these temperate salt marshes. Contradicting our expectation, roots in deeper soil showed higher water uptake rates per fine root mass than topsoil roots suggesting effective root adaptation to the anoxic subsoil. Transplanted A. portulacoides plants significantly increased the uptake of seawater with increasing inundation indicating flexibility in the use of water sources by this species which may facilitate acclimation to rising sea levels. We conclude that the zonation of salt marsh vegetation reflects the availability of water sources along the inundation gradient.


Subject(s)
Water , Wetlands , Floods , Islands , Seawater
4.
Front Plant Sci ; 8: 602, 2017.
Article in English | MEDLINE | ID: mdl-28469633

ABSTRACT

Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.

5.
Glob Chang Biol ; 20(5): 1481-97, 2014 May.
Article in English | MEDLINE | ID: mdl-24115242

ABSTRACT

Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity.


Subject(s)
Droughts , Rainforest , Trees/growth & development , Carbon/metabolism , Carbon Cycle , Indonesia , Plant Leaves/growth & development , Plant Roots/growth & development , Seasons , Species Specificity , Trees/anatomy & histology , Wood/growth & development
6.
Tree Physiol ; 24(12): 1359-67, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15465698

ABSTRACT

The spatial heterogeneity of water uptake by fine roots under field conditions was analyzed in situ with miniature sap flow gauges in a mature beech-oak-spruce mixed stand. Sap flow rate (J), sap flow density (Jd), and root surface-area-specific flow rate (uptake rate, Js) were measured for eight to 10 small-diameter roots (3-4 mm) per species in the organic layer (superficial roots) and in the mineral soil (30-80 cm, deep roots) during four months in summer 1999. We calculated Js by relating J to the surface area of the section of the fine root system distal to the position of the gauge on the root. When measured synchronously, roots of the three species did not differ significantly in mean Js, although oak roots tended to have lower rates. However, Jd decreased in the sequence spruce > beech > oak in most measurement periods. Microscopic investigation revealed differences in fine root anatomy that may partly explain the species differences in Jd and Js. Oak fine roots had a thicker periderm than beech and spruce roots of similar diameter and spruce roots had fewer fine branch rootlets than the other species. Synchronously recorded Jd and Js of nearby roots of the same tree species showed large differences in flow with coefficients of variation from 25 to 150% that could not be explained by patchy distribution of soil water. We hypothesize that the main cause of the large spatial heterogeneity in root water uptake is associated with differences between individual roots in morphology and ultrastructure of the root cortex that affect root radial and root-soil interface conductivities. The high intraspecific variation in Js may mask species differences in root water uptake. Superficial roots of all species typically had about five times higher Jd than deep roots of the same species. However, Js values were similar for superficial and deep roots in beech and spruce because small diameter roots of both species were more branched in the organic layer than in mineral soil. In oak, deep roots had lower Js (maximum of 100 g m(-2) day(-1)) than superficial roots (about 1000 g m(-2) day(-1)). We conclude that temperate tree species in mixed stands have different water uptake capacities. Water flow in the rhizosphere of forests appears to be a highly heterogeneous process that is influenced by both tree species and differences in uptake rates of individual roots within a species.


Subject(s)
Plant Roots/physiology , Trees/physiology , Fagus/physiology , Picea/physiology , Plant Roots/anatomy & histology , Plant Transpiration/physiology , Quercus/physiology , Seasons , Water
7.
Oecologia ; 126(2): 276-284, 2001 Jan.
Article in English | MEDLINE | ID: mdl-28547627

ABSTRACT

Little is known about below-ground competition between different tree species in mixed forests. We investigated the evidence for asymmetric competition between fine roots (<2 mm) of adult European beech (Fagus sylvatica) and sessile oak (Quercus petraea) trees in a mixed temperate beech-oak forest by (1) conducting fine-root growth experiments in the field (root chamber technique), (2) comparing the fine-root mass of two-species and monospecific plots, and (3) analysing the density and overlap of beech and oak root systems in shared soil volumes. Field experiments with root chambers, which allow fine-root endings to grow under controlled conditions for several months, showed that beech grew more rapidly than oak roots when both species were grown together. In the mixed beech-oak wood, where stem densities and leaf areas of the two species were similar, beech outnumbered oak three- to five-fold in fine-root biomass, and root tip and ectomycorrhiza numbers, which led to a much greater root:shoot ratio (root area index:leaf area index, RAI:LAI) for beech (3.9) than oak (1.7). The remarkably small fine-root biomass of oak was attributed to competitive replacement by beech roots as indicated by comparison with monospecific oak wood. Although oak had much less fine-root mass than beech, oak outnumbered beech in the coarse root fraction (2

SELECTION OF CITATIONS
SEARCH DETAIL
...